1
|
Sun Q, Du J, Yao A, Zhang Y, Yu B, Lim W, Hassan SU, Guan J, Dou P, Liu J. Tunable Hydrated Channels in Covalent Organic Framework Membrane for Seawater Desalination. ACS NANO 2025; 19:18409-18420. [PMID: 40340301 DOI: 10.1021/acsnano.5c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Nanofiltration and reverse osmosis (RO) are instances of pressure-driven membrane desalination processes (PMDs), which have been extensively employed for seawater desalination due to their great efficiency and environmental friendliness. However, the PMD process is usually limited to thin-film composite polyamide membranes, despite enormous research efforts in recent decades. Here, light-controlled RO COF membranes are developed by using a defect-engineered strategy to chemically rivet spiropyran units into COF channels. The spatial arrangement of spiropyran provides the defect-engineered COF membranes with manageable apertures spanning from 6.9 to 11.1 Å. The COF membrane featuring ordered ultramicropores (6.9 Å, TAPA-TFP-SP-25% COFs) exhibits a preeminent desalinization performance with a NaCl rejection of 91.2%. Furthermore, under light stimulation, the COF channels decorated with spiropyran units are capable of self-regulating the framework structure and hydration conformation by controlling the interconnectivity of confined water clusters, thus achieving hydrated pore size tuning from 11.1 to ∼4.0 Å (from TAPA-TFP-SP-50% to TAPA-TFP-MC-50% COF membrane). Under dark conditions, zwitterionic COF membranes after photoisomerization (TAPA-TFP-MC-50%) exhibit an enhanced KCl rejection (96.2%), representing a 24.1% increase when compared to the COF membrane without interconnected hydrated channels (TAPA-TFP-SP-50%). This membrane channel design concept exploits a viable avenue for developing RO membranes to achieve efficient water purification.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingcheng Du
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ayan Yao
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuting Zhang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bizi Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwang Lim
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shabi Ul Hassan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Guan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pengjia Dou
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Fu W, Zhang J, Zhang Q, Ahmad M, Sun Z, Li Z, Zhu Y, Zhou Y, Wang S. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Int J Biol Macromol 2024; 257:128546. [PMID: 38061510 DOI: 10.1016/j.ijbiomac.2023.128546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m-2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.
Collapse
Affiliation(s)
- Wenkai Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajian Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouyue Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Zhao J, Cao L, Wang X, Huo H, Lin H, Wang Q, Yang X, Vogel F, Li W, Lin Z, Zhang P. MOF@Polydopamine-incorporated membrane with high permeability and mechanical property for efficient fouling-resistant and oil/water separation. ENVIRONMENTAL RESEARCH 2023; 236:116685. [PMID: 37467944 DOI: 10.1016/j.envres.2023.116685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Metal organic frameworks (MOFs) have demonstrated great potential for their favorable impacts on the performance of water treatment membranes. Herein, the novel nanoparticles based on both nanoporous MOFs and organic PDA layer was exploited as a novel dopant for the fabrication of PES ultrafiltration (UF) membranes. The PDA was synthesized via oxidative self-polymerization under alkaline conditions and formed adhesive coatings on dispersed MOF. The properties of resulting membranes on the porosity, membrane morphology, hydrophilicity, permeability and anti-fouling performance were adequately investigated. The membranes incorporated with MOF@PDA exhibited exceptionally high permeability (209.02 L m-2·h-1), which is approximately 6 times higher than that of the pure PES membrane, and high BSA rejection (99.12%). Notably, the mechanical property and hydrophilicity of the PES membrane were both enhanced by MOF@PDA, and it has been demonstrated that greater hydrophilicity prevents fouling under practical conditions, which results in significant improvements in flux recovery ratio (FRR) (82%). In addition, the modified PES membranes were used to purify the oil/water emulsion, and the results indicates that the membranes have high permeability and rejection of oil/water emulsion, showing its great promise in practical oily sewage remediation.
Collapse
Affiliation(s)
- Jiahui Zhao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Lin Cao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Xiao Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Haoling Huo
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Huaijun Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Qiwei Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Florian Vogel
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Zhidan Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
6
|
Zhou Z, Lu TD, Sun SP, Wang Q. Roles and gains of coordination chemistry in nanofiltration membrane: A review. CHEMOSPHERE 2023; 318:137930. [PMID: 36693478 DOI: 10.1016/j.chemosphere.2023.137930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The nanofiltration (NF) membranes with the specific separation accuracy for molecules with the size of 0.5-2 nm have been applied in various industries. However, the traditional polymeric NF membranes still face problems like the trade-off effect, organic solvent consumption, and weak durability in harsh conditions. The participation of coordination action or metal-organic coordination compounds (MOCs) brings the membrane with uniform pores, better antifouling properties, and high hydrophilicity. Some of the aqueous-phase reactions also help to introduce a green fabrication process to NF membranes. This review critically summarizes the recent research progress in coordination chemistry relevant NF membranes. The participation of coordination chemistry was classified by the various functions in NF membranes like additives, interlayers, selective layers, coating layers, and cross-linkers. Then, the effect and mechanism of the coordination chemistry on the performance of NF membranes are discussed in depth. Perspectives are given for the further promotion that coordination chemistry can make in NF processes. This review also provides comprehensive insight and constructive guidance on high-performance NF membranes with coordination chemistry.
Collapse
Affiliation(s)
- Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Tian-Dan Lu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Ee LY, Tan RPW, Li SFY. Facile electrospray fabrication of ultralow biofouling cellulose acetate desalination membrane with nanocellulose/UiO66-NH2 fillers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
9
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Zhang Z, Liu C, Zhang H, Xu Z, Ju F, Yu C, Xu Y. Ultrafast Interfacial Self-Assembly toward Supramolecular Metal-Organic Films for Water Desalination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201624. [PMID: 35780496 PMCID: PMC9403643 DOI: 10.1002/advs.202201624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular metal-organic materials are considered as the ideal candidates for membrane fabrication due to their excellent film forming characteristics, diverse metal centers and ligand sources, and designable structure and function. However, it remains challenging to rapidly construct highly permeable supramolecular metal-organic membranes with high salt rejection. Herein, a novel ultrafast interfacial self-assembly strategy to prepare supramolecular metal-organic films through the strong coordination interaction between highly active 1,3,5-triformylphloroglucinol (TFP) ligands and Fe3+ , Sc3+ , or Cu2+ at the organic-aqueous interface is reported. Benefiting from the self-completing and self-limiting characteristics of this interfacial self-assembly, the new kind of supramolecular membrane with optimized composition can be assembled within 3.5 min and exhibits ultrathin, dense, defect-free features, and thus shows an excellent water permeance (21.5 L m-2 h-1 bar-1 ) with a high Na2 SO4 rejection above 95%, which outperforms almost all of the non-polyamide membranes and commercially available nanofiltration membranes. This strong-coordination interfacial self-assembly method will open up a new way for the development of functional metal-organic supramolecular films for high-performance membrane separation and beyond.
Collapse
Affiliation(s)
- Zhao Zhang
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Chang Liu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Huilin Zhang
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Zhi‐Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Feng Ju
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of EngineeringWestlake University18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake University, Westlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| |
Collapse
|
11
|
Zeng G, Liu Y, Lin Q, Pu S, Zheng S, Ang MBMY, Chiao YH. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Yang X, Huang J, Yang F, Wang W, Xue C, Zhou W, Wu Y, Shao L, Zhang Y. Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120521] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Li B, You X, Wu H, Li R, Xiao K, Ren Y, Wang H, Song S, Wang Y, Pu Y, Huang X, Jiang Z. A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Polycrystalline Iron(III) metal-organic framework membranes for organic solvent nanofiltration with high permeance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Yadav S, Ibrar I, Samal AK, Altaee A, Déon S, Zhou J, Ghaffour N. Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126744. [PMID: 34333408 DOI: 10.1016/j.jhazmat.2021.126744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 05/26/2023]
Abstract
To meet the rising global demand for water, it is necessary to develop membranes capable of efficiently purifying contaminated water sources. Herein, we report a series of novel polysulfone (PSf)/GO-vanillin nanofiltration membranes highly permeable, selective, and fouling resistant. The membranes are composed of two-dimensional (2D) graphite oxide (GO) layers embedded with vanillin as porogen and PSf as the base polymer. There is a growing interest in addressing the synergistic effect of GO and vanillin on improving the permeability and antifouling characteristics of membranes. Various spectroscopic and microscopic techniques were used to perform detailed physicochemical and morphological analyses. The optimized PSf16/GO0.15-vanillin0.8 membrane demonstrated 92.5% and 25.4% rejection rate for 2000 ppm magnesium sulphate (MgSO4) and sodium chloride (NaCl) solutions respectively. Antifouling results showed over 99% rejection for BSA and 93.57% flux recovery ratio (FRR). Experimental work evaluated the antifouling characteristics of prepared membranes to treat landfill leachate wastewater. The results showed 84-90% rejection for magnesium (Mg+2) and calcium (Ca+2) with 90.32 FRR. The study experimentally demonstrated that adding GO and vanillin to the polymeric matrix significantly improves fouling resistance and membrane performance. Future research will focus on molecular sieving for industrial separations and other niche applications using mixed matrix membranes.
Collapse
Affiliation(s)
- Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Sébastien Déon
- Institut UTINAM (UMR CNRS 6213), Université de Bourgogne-Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Zhang W, Guo D, Li Z, Shen L, Li R, Zhang M, Jiao Y, Xu Y, Lin H. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119866] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Liu Y, Shen L, Huang Z, Liu J, Xu Y, Li R, Zhang M, Hong H, Lin H. A novel in-situ micro-aeration functional membrane with excellent decoloration efficiency and antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119925] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119820] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
|
20
|
Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Khansanami M, Esfandiar A. High flux and complete dyes removal from water by reduced graphene oxide laminate on Poly Vinylidene Fluoride/graphene oxide membranes. ENVIRONMENTAL RESEARCH 2021; 201:111576. [PMID: 34214557 DOI: 10.1016/j.envres.2021.111576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Dyes molecules are the most common pollutants of wastewater in the environment from the textile industry to numbers of technologies include dyeing, printing, and painting procedures. Among membrane-based separation approaches as established methods in the water treatment industry, polymers attracted massive attention in the production of membranes due to their low cost and high-performance filtration of pollutants. However, hydrophobicity and low speed of filtration along with limited decontamination performance against some of the dyes, demand new approaches and membranes to overcome drawbacks points. Herein, a new design introduced including a support layer made by Poly Vinylidene Fluoride (PVDF)/Graphene Oxide (PGO) composite membrane via immersion precipitation process and a thin layer (≤100 nm) of reduced graphene oxide (rGO) deposited (as an active layer) through a simple vacuum filtration method. It has been observed that the presence of the GO sheets in the PGO composite improved the hydrophilicity of the membrane, water flux (from ~90 L m-2 h-1 bar-1 in pristine PVDF to ~1690 L m-2 h-1 bar-1 in PGO), and anti-fouling property. By deposition of rGO laminate on PGO support, dyes separation as high as ~99% can be achieved for most of the cationic and anionic dyes due to electrostatic adsorption, π-π interactions and molecular sieving. This approach opens new insight on hybrid designs for graphene-polymers based membrane toward efficient and fast removal of pollutants from wastewater.
Collapse
Affiliation(s)
- Mehran Khansanami
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Ali Esfandiar
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran.
| |
Collapse
|
22
|
You X, Zhang J, Shen L, Li R, Xu Y, Zhang M, Hong H, Yang L, Ma Y, Lin H. Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119532] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Zou W, Tang Y, Zeng H, Wang C, Wu Y. Porous Co 3O 4 nanodisks as robust peroxidase mimetics in an ultrasensitive colorimetric sensor for the rapid detection of multiple heavy metal residues in environmental water samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125994. [PMID: 33992021 DOI: 10.1016/j.jhazmat.2021.125994] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The current method for rapid and ultrasensitive detection of multiple heavy metals in environmental water still face challenge. Herein, the porous Co3O4 nanodisks with robust peroxidase-mimicking activity were prepared, and its catalytic activity can be significantly inhibited by the heavy metals like Cd(II), Hg(II), Pb(II) and As, which makes us to establish an ultrasensitive and rapid colorimetric sensor for the detection of multiple heavy metals. Further investigation reveals the anticompetitive inhibition effect of heavy metals on peroxidase-mimicking activity. The colorimetric sensor displays excellent sensitivity and selectivity, and the limits of detection (LOD) for Cd(II), Hg(II), Pb(II) and As are 0.085 μg·L-1, 0.19 μg·L-1, 0.2 μg·L-1 and 0.156 μg·L-1, respectively. Notably, the absorbance variation will be greater than 0.5 as the concentration of heavy metals exceeds 5 μg·L-1, which can be clearly discriminated by the naked eyes. Moreover, the average recovery range of heavy metals in actual water samples is from 86.9% to 98.3%. The above results indicate that the proposed sensor exhibits excellent practical applicability for the rapid and ultrasensitive detection of multiple harmful heavy metals in several environmental water samples, which has potential bright application in protecting the environment and human health.
Collapse
Affiliation(s)
- Wenying Zou
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hong Zeng
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
24
|
Role of different dimensional carbon nanoparticles in catalytic oxidation of organic pollutants and alleviating membrane fouling during ultrafiltration of surface water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Zhao Y, Wu M, Guo Y, Mamrol N, Yang X, Gao C, Van der Bruggen B. Metal-organic framework based membranes for selective separation of target ions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Yurtsever HA, Çetin AE. Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Jia X, Ji H, Zhang G, Xing J, Shen S, Zhou X, Sun S, Wu X, Yu D, Wyman I. Smart Self-Cleaning Membrane via the Blending of an Upper Critical Solution Temperature Diblock Copolymer with PVDF. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38712-38721. [PMID: 34369743 DOI: 10.1021/acsami.1c10687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(2,2,2-trifluoroethyl methacrylate)-b-poly(imidazoled glycidyl methacrylate-co-diethylene glycol methyl ether methacrylate) (PTFEMA-b-P(iGMA-co-MEO2MA)) containing an upper critical solution temperature (UCST) polymer chain was prepared and blended with poly(vinylidene fluoride) (PVDF) to produce a thermoresponsive membrane with smart self-cleaning performance. The successful preparation of the membrane was demonstrated by attenuated total reflection-Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy characterization. The membrane shows UCST performance, and its flux changes with the filtrate temperature as the UCST polymer chain stretches out and contracts in response to various temperatures. In addition, the UCST polymer chain can disrupt the foulant and push it away from the membrane when the temperature is above the UCST and thus enables membranes to exhibit a smart self-cleaning behavior. To the best of our knowledge, this work is the first report of a smart self-cleaning membrane based on the blending of a diblock copolymer containing a UCST polymer chain with PVDF.
Collapse
Affiliation(s)
- Xinying Jia
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Hailan Ji
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Jiale Xing
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Shusu Shen
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoji Zhou
- Jiangsu Province Engineering Research Center of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Science, Hangzhou 310021, People's Republic of China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Danfeng Yu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
28
|
Liu J, Zhang L, Cheng B, Fan J, Yu J. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In 2O 3 with multi-level heterojunctions. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125352. [PMID: 33930945 DOI: 10.1016/j.jhazmat.2021.125352] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 05/14/2023]
Abstract
Timely detection of formaldehyde is pivotal because formaldehyde is slowly released from the indoor decorative materials, jeopardizing our healthy. Herein, a high-response formaldehyde gas sensor based on Ag-ZnO/In2O3 nanofibers was successfully fabricated. Compared with all the control samples, the hybrid exhibits superior sensitivity (0.65 ppm-1), excellent selectivity (≥ 12.5) and durable stability (the deviation value ≤ 3%). Particularly, an ultra-high response value of about 186 towards 100 ppm of formaldehyde at 260 °C was achieved, heading the list of outstanding candidates. Additionally, the limit of detection is as low as 9 ppb. The enhanced gas sensing properties can be mainly attributed to multi-level heterojunctions (n-n heterojunction and Ohmic junction) and the "spill-over" effect of Ag, ultimately increasing the adsorption of gas molecules on the surface of sensing material. This work verifies that proper design of multi-level heterojunctions significantly upgrade the sensing performance.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
29
|
Huang Z, Yin S, Zhang J, Zhang N. Recent advances in membrane hydrophilic modification with plant polyphenol‐inspired coatings for enhanced oily emulsion separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhaohe Huang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Shumeng Yin
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals SINOPEC Research Institute of Safety Engineering Qingdao China
| | - Na Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
30
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium‐Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
31
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium-Metal Batteries. Angew Chem Int Ed Engl 2021; 60:16360-16365. [PMID: 34019317 DOI: 10.1002/anie.202104003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Redox molecules (RMs) as electron carriers have been widely used in electrochemical energy-storage devices (ESDs), such as lithium redox flow batteries and lithium-O2 batteries. Unfortunately, migration of RMs to the lithium (Li) anode leads to side reactions, resulting in reduced coulombic efficiency and early cell death. Our proof-of-concept study utilizes a biphasic organic electrolyte to resolve this issue, in which nonafluoro-1,1,2,2-tetrahydrohexyl-trimethoxysilane (NFTOS) and ether (or sulfone) with lithium bis(trifluoromethane)sulfonimide (LiTFSI) can be separated to form the immiscible anolyte and catholyte. RMs are extracted to the catholyte due to the enormous solubility coefficients in the biphasic electrolytes with high and low polarity, resulting in inhibition of the shuttle effect. When coupled with a lithium anode, the Li-Li symmetric, Li redox flow and Li-O2 batteries can achieve considerably prolonged cycle life with biphasic electrolytes. This concept provides a promising strategy to suppress the shuttle effect of RMs in ESDs.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
32
|
Guan Y, Chen R, Sun G, Liu Q, Liu J, Yu J, Lin C, Duan J, Wang J. The mussel-inspired micro-nano structure for antifouling:A flowering tree. J Colloid Interface Sci 2021; 603:307-318. [PMID: 34186406 DOI: 10.1016/j.jcis.2021.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
Mussels are typical marine fouling organisms that attach to surfaces though secretions, which is generally the focus of research on mussel-related fouling. This study reveals "a flowering tree" structure on mussel shells with antifouling performance. Based on the antifouling mechanism of surface microstructure, we prepared mussel-like shells (P) using the biomimetic replication method. Mussel adhesion experiments were conducted to examine the anti-mussel performances of the mussel shells and P. The anti-diatom performances of the mussel-like shells were also evaluated using three types of diatoms. The mussels responded differently to different locations on the shells, and the flowering tree microstructure exhibited excellent antifouling performance. In addition, VP (P immersed in vinyl silicon oil) and HP (P immersed in hydroxyl silicone oil) were prepared. The anti-diatom performance of VP was better than those of P and HP, indicating that hydrophobicity has a greater influence on anti-diatom performance than electronegativity. The newly discovered antifouling micro-nano structure was parameterized, revealing that a branch of the flowering tree has an inclination of 13.3° to the surface with a height of 210.1 nm. The results of this study provide insights for further investigations of bionic micro-nano structures in the field of antifouling.
Collapse
Affiliation(s)
- Yu Guan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Jizhou Duan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Key Lab Marine Environm Corros & Biofouling, Chinese Academy of Sciences Institute of Oceanology, Qingdao 266071, China; Open Studio Marine Corros & Protect, Pilot Natl Lab Marine Sci & Technol, Qingdao 266237, China; Ctr Ocean Megasci, Chinese Academy of Sciences Chinese Acad Sci, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
33
|
Guo Y, Sun Q, Wu FG, Dai Y, Chen X. Polyphenol-Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007356. [PMID: 33876449 DOI: 10.1002/adma.202007356] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polyphenols, the phenolic hydroxyl group-containing organic molecules, are widely found in natural plants and have shown beneficial effects on human health. Recently, polyphenol-containing nanoparticles have attracted extensive research attention due to their antioxidation property, anticancer activity, and universal adherent affinity, and thus have shown great promise in the preparation, stabilization, and modification of multifunctional nanoassemblies for bioimaging, therapeutic delivery, and other biomedical applications. Additionally, the metal-polyphenol networks, formed by the coordination interactions between polyphenols and metal ions, have been used to prepare an important class of polyphenol-containing nanoparticles for surface modification, bioimaging, drug delivery, and disease treatments. By focusing on the interactions between polyphenols and different materials (e.g., metal ions, inorganic materials, polymers, proteins, and nucleic acids), a comprehensive review on the synthesis and properties of the polyphenol-containing nanoparticles is provided. Moreover, the remarkable versatility of polyphenol-containing nanoparticles in different biomedical applications, including biodetection, multimodal bioimaging, protein and gene delivery, bone repair, antibiosis, and cancer theranostics is also demonstrated. Finally, the challenges faced by future research regarding the polyphenol-containing nanoparticles are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Qing Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
34
|
Shi D, Yu X, Fan W, Wee V, Zhao D. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and Self-healing performance. J Colloid Interface Sci 2021; 602:810-821. [PMID: 34157516 DOI: 10.1016/j.jcis.2021.05.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022]
Abstract
Although more and more attention has been paid to electromagnetic interference (EMI) shielding fabric materials due to increasing electromagnetic waves pollution, little attention to their fire safety behavior and durability in practical use. Herein, durable EMI shielding ramie fabric with flame retardant and self-healing performance were fabricated by depositing ammonium polyphosphate (APP)/polyethyleneimine (PEI) layer, MXene sheets and polycaprolactone (PCL) layer. The resultant multifunctional fabric could self-extinguish and the peak heat release rate (pHRR) value reduced about 74.3% for the modified ramie fabric that contains about 12 wt% of PEI/APP bilayer compared with pure ramie fabric. Furthermore, the ramie fabric coated by a increasing amount of MXene sheets changed from insulating to conductive, thus gradually improving their EMI shielding performance, which exhibit a high electrical conductivity of 900.56 S/m with an outstanding SE value of 35 dB at a 1.2 mg/cm2 content in the X-band. Besides, When the multifunctional fabric was cut off under external force, it could achieve self-healing and the EMI shielding performance can recover to 34 dB due to the low melting point and good fluidity of PCL. Thus, this multifunctional fabric holds great promise for wearable intelligent cloth, EMI shielding and other fields.
Collapse
|
36
|
Zhai P, Shi C, Zhao S, Liu W, Wang W, Yao L. Thermal decomposition of ammonium perchlorate-based molecular perovskite from TG-DSC-FTIR-MS and ab initio molecular dynamics. RSC Adv 2021; 11:16388-16395. [PMID: 35479174 PMCID: PMC9030385 DOI: 10.1039/d0ra10559g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
(H2dabco)[NH4(ClO4)3] (DAP, dabco = 1,4-diazabicyclo[2.2.2]octane) is a recently synthesized ammonium perchlorate-based molecular perovskite energetic material. The high-symmetry perovskite configuration assembles the oxidant ClO4− and fuel H2dabco2+ into a compact cubic crystal, realizing a high energy-releasing efficiency. In this study, the thermal decomposition of DAP has been investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) coupled with Fourier transform infrared (FTIR) spectroscopy and mass spectroscopy (MS). The TG-DSC profiles show that DAP has an intense one-stage heat release process with a weight loss of 94.7%. The evolved gas products are identified as H2O, CO2, CO, HCl, HCN, NH3, HNCO by FTIR spectrum, in which the infrared characteristic peak at 2283 and 2250 cm−1 is clarified not from N2O and assigned to HNCO. The principal products are H2O and CO2 together with significant amounts of HCl, HCN, NH3 in MS, while few nitrogen oxides and O2 are detected. The experimental results show that organic components have been the prominent media for the degradation of ClO4−. To refine the mechanism observed in experiment, ab initio molecular dynamics simulations are carried out to reveal the atomistic reaction mechanisms. The decomposition of DAP starts with proton transfer from NH4+ and H2dabco2+ to ClO4−. The deprotonated carbon skeleton is preferable to NH3 in capturing O atoms, realizing a faster consumption of O atoms. Amounts of H atoms enter the environment being active free radicals, realizing an efficient autocatalytic chain propagation of degradation of ClO4−. The atomistic thermal decomposition reaction mechanism of DAP uncovers the role of organic components in promoting the degradation of ClO4−, which will help improve the synthesis strategy of molecular perovskite energetic materials with improved performance. Organic components realize a more efficient autocatalytic chain propagation for degradation of ClO4− in the thermal decomposition process of DAP.![]()
Collapse
Affiliation(s)
- Pengfei Zhai
- Xi'an High-tech Research Institute Xi'an 710025 People's Republic of China .,Xi'an Modern Chemistry Research Institute Xi'an 710065 People's Republic of China
| | - Chengying Shi
- Xi'an High-tech Research Institute Xi'an 710025 People's Republic of China
| | - Shengxiang Zhao
- Xi'an Modern Chemistry Research Institute Xi'an 710065 People's Republic of China
| | - Wenbin Liu
- Xi'an High-tech Research Institute Xi'an 710025 People's Republic of China
| | - Wenxin Wang
- Sichuan Honghua Industrial Co., Ltd. Chengdu 611130 People's Republic of China
| | - Lina Yao
- Xi'an Modern Chemistry Research Institute Xi'an 710065 People's Republic of China
| |
Collapse
|
37
|
Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119080] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119101] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Long Y, Yu G, Dong L, Xu Y, Lin H, Deng Y, You X, Yang L, Liao BQ. Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process. WATER RESEARCH 2021; 189:116665. [PMID: 33254070 DOI: 10.1016/j.watres.2020.116665] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Effects of calcium ions and polyaluminum chloride (PACl) on membrane fouling in coagulation-ultrafiltration (UF) process were investigated in this study. Filtration tests demonstrated three interesting filtration behaviors: 1) high specific filtration resistance (SFR) of alginate solution with low CaCl2 or PACl addition (e. g. 3.51×1015 m·kg -1 under the condition of 1.5 mM CaCl2 addition); 2) unimodal pattern of alginate SFR with PACl or CaCl2 addition alone; 3) synergistic effects between CaCl2 and PACl on alginate SFR. It was found that, the foulant morphological changes driven by the thermodynamic mechanisms based on Flory-Huggins lattice theory take the critical roles in these filtration behaviors. Density functional theory (DFT) calculations showed that initial coordination of Ca2+ and Al3+ ions with alginates tended to form tetrahedron geometry and geometry of coordinating three terminal carboxyl groups, respectively, which facilitated to elongate the alginate chains (without clustering the flocs) and form more stable gel, increasing SFR. Improving Ca2+ and Al3+ dosages triggered transition to other geometries for clustering polymeric network and flocculation, reducing SFR. Due to the higher binding affinity of Ca2+ over Al3+, Ca2+ and Al3+ sequentially take roles of enlarging polymeric network and clustering the coordination compounds, and then facilitate to form large size flocs and reduce SFR, causing the synergistic effects between CaCl2 and PACl additions. The proposed thermodynamic mechanisms satisfactorily explained these interesting fouling behaviors, allowing to further optimize coagulation-UF process.
Collapse
Affiliation(s)
- Ying Long
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Dong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| | - Ying Deng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Biao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
40
|
Li R, Li J, Rao L, Lin H, Shen L, Xu Y, Chen J, Liao BQ. Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118790] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ma R, Lu X, Kong X, Zheng S, Zhang S, Liu S. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C–Cl active site. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Xu S, Li J, Ye Q, Shen L, Lin H. Flame-retardant ethylene vinyl acetate composite materials by combining additions of aluminum hydroxide and melamine cyanurate: Preparation and characteristic evaluations. J Colloid Interface Sci 2021; 589:525-531. [PMID: 33493862 DOI: 10.1016/j.jcis.2021.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
There is a great interest to develop efficient fire-resistant materials. While ethylene vinyl acetate (EVA) is a widely used material, it suffers from the problem of relatively high inflammability which seriously hinders its usage as the product material with a high flame-retardant requirement. In this study, a strategy to combine aluminum hydroxide (ATH) and melamine cyanurate (MCA) with EVA was proposed to prepare the EVA composite materials with high flame resistance. It was found that slight addition of MCA could increase the lubricity of EVA and raise the compatibility between EVA and ATH. Thermogravimetric analysis (TGA) indicated that the thermal stability of EVA was improved via adding MCA, which was evidenced by the delayed thermal decomposition temperature. Moreover, the combustion results indicated that the EVA composite with 60 parts per hundred (phr) ATH and 40 phr MCA addition (EVA-60-40) displayed the optimal isolated layer favoring the fire resistance. In addition, the highest limiting oxygen index (LOI) value (27.5%) and V-0 rating of the EVA-60-40 as compared with other components indicated its incombustible nature. These results suggested the synergetic effect of ATH and MCA additions, the high efficiency of the proposed strategy and the wide application prospect of the produced EVA-ATH-MCA composite materials.
Collapse
Affiliation(s)
- Siyi Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jianxi Li
- CGN DELTA (Jiangsu) Plastic & Chemical Co., Ltd., Suzhou 215400, PR China.
| | - Qunfeng Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|