1
|
Godshall GF, Rau DA, Williams CB, Moore RB. Additive Manufacturing of Poly(phenylene Sulfide) Aerogels via Simultaneous Material Extrusion and Thermally Induced Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307881. [PMID: 38009658 DOI: 10.1002/adma.202307881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.
Collapse
Affiliation(s)
- Garrett F Godshall
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel A Rau
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher B Williams
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert B Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Zhu Y, Liu R, Xu X, Fu Y, Dai J, Zhang W, Zhang G, Zhang J, Ma X, Chen P. Construction and hydrophilic modification of dual-network structured nonwoven/UHMWPE composite membranes for water processing. RSC Adv 2023; 13:18480-18487. [PMID: 37346944 PMCID: PMC10280127 DOI: 10.1039/d3ra00920c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Water pollution caused by the continuous development of industrialization has always been a common concern of mankind. Herein, a novel strategy to fabricate a high-performance composite membrane based on dual-network structured nonwoven net/UHMWPE nanopores via a thermal phase separation and composite technique is reported. By thermal phase separation of ultra-high-molecular weight polyethylene (UHMWPE)/liquid paraffin (LP), this approach enables 3D nanopores to tightly bond with a nonwoven net to form a dual-network structure. The dual-network composite membrane possesses the integrated features of pore structure and high porosity (89.9%). After modification with hyperbranched polymers (HBPs), the composite membrane with the desirable surface chemistry achieves high-efficiency filtration (water flux = 1054 L m-2 h-1, rejection rate = 50 nm PS nanospheres almost close to 100%, and antibacterial properties). The fabrication of such composites may provide new insights into the design and development of high-performance filtration and separation materials for various applications.
Collapse
Affiliation(s)
- Yunan Zhu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Rong Liu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Xiaoxiao Xu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Yijun Fu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Jiamu Dai
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Wei Zhang
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Guangyu Zhang
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Junxiong Zhang
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University Nantong 226019 P. R. China +86 21 85012837
| | - Xiaomin Ma
- National Equipment New Material & Technology (Jiangsu) Co., Ltd Suzhou 215100 P. R. China
| | - Pin Chen
- Jiangsu Jinni Engineering Fabric Co., Ltd Nantong 226019 P. R. China
| |
Collapse
|
3
|
Pochivalov K, Basko A, Lebedeva T, Yurov M, Yushkin A, Volkov A, Bronnikov S. Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. MEMBRANES 2023; 13:422. [PMID: 37103849 PMCID: PMC10145273 DOI: 10.3390/membranes13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 μm) and o-xylene as a solvent. Either homogeneous mixtures of the polymer melt and solvent or thermoreversible gels with crystallites acting as crosslinks of the inter-macromolecular network (swollen semicrystalline polymer) can be obtained at different soaking times. It was shown that the porous structure and filtration performance of the membranes depended on the swelling degree of the polymer, which can be controlled by the time of polymer soaking in organic solvent at elevated temperature (106 °C was found to be the optimal temperature for UHMWPE). In the case of homogeneous mixtures, the resulting membranes possessed both large and small pores. They were characterized by quite high porosity (45-65% vol.), liquid permeance of 46-134 L m-2 h-1 bar-1, a mean flow pore size of 30-75 nm, and a very high crystallinity degree of 86-89% at a decent tensile strength of 3-9 MPa. For these membranes, rejection of blue dextran dye with a molecular weight of 70 kg/mol was 22-76%. In the case of thermoreversible gels, the resulting membranes had only small pores located in the interlamellar spaces. They were characterized by a lower crystallinity degree of 70-74%, a moderate porosity of 12-28%, liquid permeability of up to 12-26 L m-2 h-1 bar-1, a mean flow pore size of up to 12-17 nm, and a higher tensile strength of 11-20 MPa. These membranes demonstrated blue dextran retention of nearly 100%.
Collapse
Affiliation(s)
- Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Alexey Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
- Biological and Environmental Science, and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sergei Bronnikov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia
| |
Collapse
|
4
|
Synergism effect between internal and surface cubic-large-pores in the enhancement of separation performance in hierarchically porous membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Guo Y, Wu H, Guo S, Qiu J. Tunable all-in-one bimodal porous membrane of ultrahigh molecular weight polyethylene for solar driven interfacial evaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Shi J, Zhou J, Fan D, Lin T, Wang J, Zhao J, Ronen A, Li M, You J. Enhanced Separation Performance of Hierarchically Porous Membranes Fabricated via the Combination of Crystallization Template and Foaming. Polymers (Basel) 2022; 14:5160. [PMID: 36501557 PMCID: PMC9736639 DOI: 10.3390/polym14235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, poly (vinylidene fluoride) (PVDF) hierarchically porous membranes (HPMs) with isolated large pores and continuous narrow nano-pores have been fabricated from its blend with poly (methyl methacrylate) (PMMA) based on the combination of crystallization template with chemical or supercritical CO2 foaming. On the one hand, the decomposition of azodicarbonamide (ADC, chemical foaming agent) or the release of CO2 can produce isolated large pores. On the other hand, PMMA is expelled during the isothermal crystallization of PVDF in their miscible blend, yielding narrow nano-pores upon etching with a selective solvent. In the case of supercritical CO2, the attained PVDF HPMs fail to improve separation performance because of the compact wall of isolated-large-pore and consequent poor connectivity of hierarchical pores. In the case of ADC, the optimal HPM exhibits much higher flux (up to 20 times) without any loss of selectivity compared with the reference only with nano-pores. The enhanced permeability can be attributed to the shorter diffusion length and lower diffusion barrier from isolated large pores, while the comparable selectivity is determined by narrow nano-pores in THE matrix.
Collapse
Affiliation(s)
- Jiahui Shi
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahai Zhou
- Zhejiang Chuanhua Chemical Group Co., Ltd., Hangzhou 311215, China
| | - Donglei Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Taotao Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayao Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqi Zhao
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Avner Ronen
- Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Sede Boqer Campus, Ben Gurion Univ Negev, Beer Sheva IL-84990, Israel
| | - Minggang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jichun You
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
8
|
Shen Y, Liu Z, Jiang G, Li C, Guo Y, Chen R, Guo S. Fabrication of light‐weight ultrahigh molecular weight polyethylene films with hybrid porous structure and the thermal insulation properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yulian Shen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Zhiyu Liu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Genjie Jiang
- Analysis and Testing Department Jiangsu Industrial Technology Research Institute of Advanced Polymer Materials Nanjing China
| | - Chunhai Li
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Yuhang Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology Polymer Research Institute of Sichuan University Chengdu China
| |
Collapse
|
9
|
Arzhakova OV, Nazarov AI, Solovei AR, Dolgova AA, Kopnov AY, Chaplygin DK, Tyubaeva PM, Yarysheva AY. Mesoporous Membrane Materials Based on Ultra-High-Molecular-Weight Polyethylene: From Synthesis to Applied Aspects. MEMBRANES 2021; 11:membranes11110834. [PMID: 34832063 PMCID: PMC8624307 DOI: 10.3390/membranes11110834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
The development of new porous polymeric materials with nanoscale pore dimensions and controlled morphology presents a challenging problem of modern materials and membrane science, which should be based on scientifically justified approaches with the emphasis on ecological issues. This work offers a facile and sustainable strategy allowing preparation of porous nanostructured materials based on ultra-high-molecular-weight polyethylene (UHMWPE) via the mechanism of environmental intercrystallite crazing and their detailed characterization by diverse physicochemical methods, including SEM, TEM, AFM, liquid and gas permeability, DSC, etc. The resultant porous UHMWPE materials are characterized by high porosity (up to ~45%), pore interconnectivity, nanoscale pore dimensions (below 10 nm), high water vapor permeability [1700 g/(m2 × day)] and high gas permeability (the Gurley number ~300 s), selectivity, and good mechanical properties. The applied benefits of the advanced UHMWPE mesoporous materials as efficient membranes, breathable, waterproof, and insulating materials, light-weight materials with reduced density, gas capture and storage systems, porous substrates and scaffolds are discussed.
Collapse
Affiliation(s)
- Olga V. Arzhakova
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
- Correspondence:
| | - Andrei I. Nazarov
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| | - Arina R. Solovei
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| | - Alla A. Dolgova
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| | - Aleksandr Yu. Kopnov
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| | - Denis K. Chaplygin
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| | - Polina M. Tyubaeva
- Chemistry of Innovative Materials and Technologies, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia;
| | - Alena Yu. Yarysheva
- Faculty of Chtmistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.I.N.); (A.R.S.); (A.A.D.); (A.Y.K.); (D.K.C.); (A.Y.Y.)
| |
Collapse
|
10
|
Bazgir H, Abbas-Abadi MS, Haghighi MN, Darounkola MRR, Issaabadi Z, Rashedi R. Synthesis of novel Ziegler Natta catalyst in the presence of internal promoter and electron donors for ethylene and ethylene/ 1-hexene polymerization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02666-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|