1
|
Kv A, Puhan MR, Vasave DB, Gohil T, Karan S, Sutariya B. Are Hansen solubility parameters relevant in predicting the post-treatment effect on polyamide-based TFC membranes? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21157-21171. [PMID: 38388971 DOI: 10.1007/s11356-024-32520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
This study investigates the impact of solvent post-treatment on polyamide-based thin film composite (TFC) membranes, specifically examining the effect on commercial nanofiltration (NF) and reverse osmosis (RO) membranes. Na2SO4 rejection and increase in pure water permeance (PWP) were considered as the output parameters. The disparity in Hansen solubility parameters (HSP) between the post-treatment solution and the polyamide layer of the TFC membrane, denoted by Ra, is well adapted to understand the enhancement in water permeance through the membranes upon treatment. Aqueous solutions of dimethylformamide with a Ra value of 4, acetonitrile with a Ra value of 8.3, and ethanol with a Ra value of 12.7 were used as the post-treatment solutions. Our experimental design, based on the Box-Behnken design of Response Surface Methodology, incorporates variables such as the concentration of the solvent in the solution (% v/v), Ra value, and treatment time (s). Our findings demonstrate that the effect of post-treatment on the TFC membranes is not governed by the Ra value. Notably, while the post-treatment with the aqueous solution of acetonitrile, 80% v/v for 30 s, had considerable effects on NF membranes (124.5% enhancement in PWP; reduction of 3.5% in Na2SO4 rejection), its impact on RO membranes was negligible. Several factors explain this discrepancy, including the limitations of the HSP model for composite polymers, the inaccuracy of the PWP or salt rejection as a swelling indicator, variations in the HSP values of the polyamide layers for different membranes, and possible modifications in the interface between the support membrane and the polyamide layer. In summary, our study provides insights into the complex interactions between solvents and composite membranes, indicating that HSP alone is not a decisive factor in predicting post-treatment effects on polyamide-based TFC membranes.
Collapse
Affiliation(s)
- Amaya Kv
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Central Institute of Petrochemicals Engineering and Technology, Ernakulam, 683501, Kerala, India
| | - Manas Ranjan Puhan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Bahadursing Vasave
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tushar Gohil
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Li B, Xu X, Yang Z, Lu J, Han J. Recent Advances in Layered-Double-Hydroxide-Based Separation Membranes. Chempluschem 2024; 89:e202300521. [PMID: 37897329 DOI: 10.1002/cplu.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The use of two-dimensional materials shows great promise for the development of next-generation membrane materials, thanks to their atomic thinness and the ease with which precise nanochannels can be constructed. Among these materials, layered double hydroxides (LDHs) stand out as an important class, possessing many features that make them ideal for constructing high-performance membranes. LDHs offer many advantages, such as their abundant and tunable interlayer anions, which enable the preparation of membranes with adjustable sub-nanometer pore sizes. Additionally, their hydrophilicity and positive charge characteristics afford them unique benefits. LDHs have been found to be effective in gas separation, ion sieving, and nanofiltration. This review provides a summary of the latest progress in using LDHs for membrane separation. It begins by introducing the basic properties of LDHs, followed by the assembly strategy for LDH membranes. Furthermore, the review presents the research status of LDHs membranes in various fields in a systematic manner. Lastly, the paper highlights some challenges and future prospects for preparing and applying LDHs membranes.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaozhi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zeya Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jingbin Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000, Quzhou, China
| |
Collapse
|
3
|
Zhao X, Meng K, Niu Y, Ming S, Rong J, Yu X, Zhang Y. Surface/interfacial transport through pores control desalination mechanisms in 2D carbon-based membranes. Phys Chem Chem Phys 2023; 25:30296-30307. [PMID: 37930335 DOI: 10.1039/d3cp03133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The shortage of freshwater is a critical concern for contemporary society, and reverse osmosis desalination technology has gathered considerable attention as a potential solution to this problem. It has been recognized that the desalination process involving water flow through angstrom-sized pores has tremendous potential. However, it is challenging to obtain angstrom-sized pore structures with internal mass transfer and surface/interface properties matching the application conditions. Herein, a two-dimensional (2D) zeolite-like carbon structure (Carzeo-ANG) was constructed with unique angstrom-sized pores in the zeolite structure; then, the surface/interfacial transport behavior and percolation effect of the Carzeo-ANG desalination membrane were evaluated by density functional theory (DFT) calculations and classical molecular dynamics. The first-principles calculations in density functional theory were implemented through the Vienna ab initio simulation package (VASP), which is a commercial package for the simulation of carbon-based materials. The results show that Carzeo-ANG is periodically distributed with angstrom-sized pores (effective diameter = 5.4 Å) of dodecacyclic carbon rings, which ensure structural stability while maintaining sufficient mechanical strength. The remarkable salt-ion adsorption properties and mass transfer activity combined with the reasonable density distribution and free energy barrier for water molecules endow the membrane with superior desalination ability. At the pressure of 80 MPa, the rejection efficiency of Cl- and Na+ were 100% and 96.25%, and the membrane could achieve a water flux of 132.71 L cm-2 day-1 MPa-1. Moreover, the interconnected electronic structure of Carzeo-ANG imparts a self-cleaning effect.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Kun Meng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yutao Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Sen Ming
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yannan Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
4
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
5
|
Liu J, Qin X, Feng X, Li F, Liang J, Hu D. Additive-optimized micro-structure in cellulose acetate butyrate-based reverse osmosis membrane for desalination. CHEMOSPHERE 2023; 327:138512. [PMID: 36972876 DOI: 10.1016/j.chemosphere.2023.138512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Progress toward the high water flux of cellulose acetate butyrate (CAB)-based reverse osmosis (RO) membrane is a bottleneck for desalination and mitigation of fresh water shortage. Here, we develop an "optimization of formulation-induced structure" strategy using acetone (solvent), triethyl phosphate (pore-inducing agent), glycerin and n-propanol (boosters), which achieves a state-of-the-art salt rejection of 97.1% and permeate flux of 8.73 L m-2·h-1, ranking top among CAB-based RO membrane. Compared with reported literatures, it represents high separation performance for different concentrations (20-100 mg L-1) of Rhodamine B and Congo red, different ion types (NaCl and MgCl2), different time (600 min), and resistance to feed pressure changes. The key is the appropriate viscosity of the casting solution (995.52 mPa s), the synergy between the components and additives, contributing to the formation of "jellyfish"-like microscopic pore structure with the lowest surface roughness (Ra = 16.3) and good hydrophilicity. The proposed correlation mechanism between additive-optimized micro-structure and desalination provides a promising prospect for CAB-based RO membrane.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Xiang Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Xiaoping Feng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Fengming Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Jun Liang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Shen Q, Song Q, Mai Z, Lee KR, Yoshioka T, Guan K, Gonzales RR, Matsuyama H. When self-assembly meets interfacial polymerization. SCIENCE ADVANCES 2023; 9:eadf6122. [PMID: 37134177 PMCID: PMC10156122 DOI: 10.1126/sciadv.adf6122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Interfacial polymerization (IP) and self-assembly are two thermodynamically different processes involving an interface in their systems. When the two systems are incorporated, the interface will exhibit extraordinary characteristics and generate structural and morphological transformation. In this work, an ultrapermeable polyamide (PA) reverse osmosis (RO) membrane with crumpled surface morphology and enlarged free volume was fabricated via IP reaction with the introduction of self-assembled surfactant micellar system. The mechanisms of the formation of crumpled nanostructures were elucidated via multiscale simulations. The electrostatic interactions among m-phenylenediamine (MPD) molecules, surfactant monolayer and micelles, lead to disruption of the monolayer at the interface, which in turn shapes the initial pattern formation of the PA layer. The interfacial instability brought about by these molecular interactions promotes the formation of crumpled PA layer with larger effective surface area, facilitating the enhanced water transport. This work provides valuable insights into the mechanisms of the IP process and is fundamental for exploring high-performance desalination membranes.
Collapse
Affiliation(s)
- Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Wu B, Wang N, Shen Y, Jin CG, An QF. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Liu Y, Wu H, Guo S, Cong C, Du J, Xin Z, Zhang H, Wang J, Wang Z. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes? J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Li Y, Shi M. Controlled solvent activation by iron (III) acetylacetonate for improving polyamide reverse osmosis membrane performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Permeability improvement of reverse osmosis membranes by addition of dimethyl sulfoxide in the interfacial polymerization media. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Constructing semi-oriented single-walled carbon nanotubes artificial water channels for realized efficient desalination of nanocomposite RO membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Puhan MR, Sutariya B, Karan S. Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Polyamide nanofiltration membranes with rigid–flexible microstructures for high-efficiency Mg2+/Li+ separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Seo JY, Choi MH, Lee BW, Lee JH, Shin S, Cho S, Cho KY, Baek KY. Feasible Detoxification Coating Material for Chemical Warfare Agents Using Poly(methyl methacrylate)-Branched Poly(ethyleneimine) Copolymer and Metal-Organic Framework Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50246-50255. [PMID: 36288400 DOI: 10.1021/acsami.2c15961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defense against chemical warfare agents (CWAs) is regarded as a top priority for the protection of humanity, but it still depends on physical protection with severe limitations such as residual toxicity and post-treatment requirement. In this study, a strategically designed functional polymeric substrate was composited with a metal-organic framework catalyst to remove toxicity immediately. A series of PMMA-BPEI copolymers exhibited high processability as a coating and accelerated the catalytic activity of Zr(IV)-based metal-organic framework catalysts (UiO-66). Among them, PMB12_40 composite coating on a cotton fabric, containing a PMMA-BPEI copolymer (PMMA/BPEI = 1/2) and 40% of UiO-66 catalyst, can efficiently decompose nerve agent simulants (methyl-paraoxon) under both liquid phase (t1/2 = 0.14 h) and humidified (t1/2 = 4.8 h) conditions. Moreover, a real agent, GD, was decomposed 100% by PMB12_40 in 4 h at 25 °C and 65% relative humidity. On the basis of superior catalytic activity, the PMB composites are anticipated to be a potential material for active chemical protection coating.
Collapse
Affiliation(s)
- Jin Young Seo
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Min Hyuk Choi
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bo Woo Lee
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Seunghan Shin
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Sangho Cho
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kie Yong Cho
- Department of Industrial Chemistry, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Kyung-Youl Baek
- Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Rapid construction of cyclodextrin polyester layer on polyamide for preparing highly permeable reverse osmosis membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Removing emerging perfluoroalkyl ether acids and fluorotelomer sulfonates from water by nanofiltration membranes: insights into performance and underlying mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sun N, Dou P, Zhai W, He H, Nghiem LD, Vatanpour V, Zhang Y, Liu C, He T. Polyethylene separator supported thin-film composite forward osmosis membranes for concentrating lithium enriched brine. WATER RESEARCH 2022; 216:118297. [PMID: 35325825 DOI: 10.1016/j.watres.2022.118297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To extract lithium from salt lake brine involves a process of separation and concentration. After separating lithium from brine, the lithium ion concentration is generally a few hundred mg/L which is far below the required 20-30 g/L (as Li+) before precipitation as lithium carbonate. The concentration step of a lithium enriched brine is crucial but highly energy-intensive. Spontaneous forward osmosis (FO) technology offers the possibility for concentrating lithium ions with low energy. Because the concentrating process involves both feed and draw solution with very high salinity, it is highly desirable to have a high performance FO membrane with a low structural parameter as well as a high rejection to ions. In this work, thin polyethylene separator supported FO (PE-FO) membranes were prepared and post-treated stepwise with benzyl alcohol (BA) and hydraulic compaction. The effect of the post-treatment on the FO performance was systematically analyzed. Excellent FO performance was achieved: the water flux and reverse salt flux selectivity were 66.3 LMH and 5.25 L/g, respectively, when the active layer is oriented towards the 0.5 M NaCl draw solution with deionized water as the feed. To the best of our knowledge, this FO flux is the highest ever reported in the open literature under similar test conditions. Applied in concentrating lithium enriched brine, the membrane showed superior water flux using saturated MgCl2 as draw solution. A new FO model was established to simulate the water flux during the concentration process with good agreement with the experimental results. The promising results using PE-FO membrane for lithium enrichment opens a new frontier for the potential application of FO membranes.
Collapse
Affiliation(s)
- Nan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengjia Dou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Wentao Zhai
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Yuebiao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
19
|
Kozmai A, Pismenskaya N, Nikonenko V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int J Mol Sci 2022; 23:ijms23042238. [PMID: 35216352 PMCID: PMC8877549 DOI: 10.3390/ijms23042238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, we simulate the changes in the structure and transport properties of an anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) caused by its modification with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages and included keeping the membrane at a low temperature, applying a PFSI solution on its surface, and, subsequently, drying it at an elevated temperature. We applied the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (≈4 µm) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby, blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which exhibits a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane became comparable in its transport characteristics with more expensive IEMs available on the market.
Collapse
|
20
|
Xue Q, Zhang K. The Preparation of High-Performance and Stable MXene Nanofiltration Membranes with MXene Embedded in the Organic Phase. MEMBRANES 2021; 12:2. [PMID: 35054527 PMCID: PMC8778054 DOI: 10.3390/membranes12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanomaterials embedded in nanofiltration membranes have become a promising modification technology to improve separation performance. As a novel representation of two-dimensional (2D) nanomaterials, MXene has nice features with a strong negative charge and excellent hydrophilicity. Our previous research showed that MXene nanosheets were added in the aqueous phase, which enhanced the permeselectivity of the membrane and achieved persistent desalination performance. Embedding the nanomaterials into the polyamide layer through the organic phase can locate the nanomaterials on the upper surface of the polyamide layer, and also prevent the water layer around the hydrophilic nanomaterials from hindering the interfacial polymerization reaction. We supposed that if MXene nanosheets were added in the organic phase, MXene nanosheets would have more negative contact sites on the membrane surface and the crosslinking degree would increase. In this study, MXene were dispersed in the organic phase with the help of ultrasound, then MXene nanocomposite nanofiltration membranes were achieved. The prepared MXene membranes obtained enhanced negative charge and lower effective pore size. In the 28-day persistent desalination test, the Na2SO4 rejection of MXene membrane could reach 98.6%, which showed higher rejection compared with MXene embedded in aqueous phase. The results of a long-time water immersion test showed that MXene membrane could still maintain a high salt rejection after being soaked in water for up to 105 days, which indicated MXene on the membrane surface was stable. Besides MXene membrane showed high rejection for high-concentration brine and good mono/divalent salt separation performance in mono/divalent mixed salt solutions. As a part of the study of MXene in nanofiltration membranes, we hoped this research could provide a theoretical guidance for future research in screening different addition methods and different properties.
Collapse
Affiliation(s)
- Qiang Xue
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| |
Collapse
|
21
|
On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the specific energy consumption (SEC) required for reverse osmosis (RO) desalination has been steeply reduced over the past few decades, there is an increasing demand for high-selectivity membranes. However, it is still hard to find research papers empirically dealing with increasing the salt rejection of RO membranes and addressing the SEC change possibly occurring while increasing salt rejection. Herein, we examined the feasibility of the process and material approaches to increase the salt rejection of RO membranes from the perspective of the SEC and weighed up a better approach to increase salt rejection between the two approaches. A process approach was confirmed to have some inherent limitations in terms of the trade-off between water permeability and salt rejection. Furthermore, a process approach is inappropriate to alter the intrinsic salt permeability of RO membranes, such that it should be far from a fundamental improvement in the selectivity of RO membranes. Thus, we could conclude that a material approach is necessary to make a fundamental improvement in the selectivity of RO membranes. This paper also provides discussion on the specific demands for RO membranes featuring superior mechanical properties and excellent water/salt permselectivity to minimize membrane compaction while maximizing the selectivity.
Collapse
|
22
|
Guo S, Zhang H, Chen X, Feng S, Wan Y, Luo J. Fabrication of Antiswelling Loose Nanofiltration Membranes via a "Selective-Etching-Induced Reinforcing" Strategy for Bioseparation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19312-19323. [PMID: 33871259 DOI: 10.1021/acsami.1c02611] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With diverse selectivity, higher permeance, and good antifouling property, loose polyamide nanofiltration (NF) membranes can be potentially deployed in various bioseparation applications. However, the loose NF membrane with a low crosslinking degree generally suffers from the alkali-induced pore swelling during chemical cleaning, resulting in degradation of separation performance with time. In this work, we conceive a novel strategy to tailor the separating layer through alkaline post-etching following the interfacial polymerization process, where piperazine and tannic acid (TA) were used as water-phase monomers, and trimesoyl chloride (TMC) and ferric acetylacetonate were employed as organic monomers in n-hexane. Thereinto, the polyester network formed by TA and TMC was selectively etched by alkaline treatment, thus obtaining a loose NF membrane, whose structure and performance could be facilely tailored by controlling the TA ratio and the etching pH. As a result, the well-designed loose NF membrane exhibited higher flux, better selectivity, and more stable separation performance in a long-term filtration of diluted cane molasses. Interestingly, the obtained loose NF membrane showed excellent antiswelling ability during alkaline cleaning because of network locking induced by Fe3+ chelation, decrease in the carboxyl proportion (more hydroxyl generation due to the ester bond hydrolysis), and enhanced interface interaction between the separation layer and the sublayer attributed to catechol adhesion effect. Therefore, such a "selective-etching-induced reinforcing" strategy could endow the polyamide NF membrane with both loose and antiswelling separation layer in a reliable and scalable way, which provides a new perspective for preparing highly selective and stable NF membrane for resource recovery.
Collapse
Affiliation(s)
- Shiwei Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|