1
|
de Azevedo JCV, de Urzedo APFM, da Luz Mesquita P, da Cunha Filho RG, Baston EP, Samanamud GL, Naves LLR, Naves FL. Recent advances in boron removal in aqueous media. An approach to the adsorption process and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12207-12228. [PMID: 38225497 DOI: 10.1007/s11356-024-31882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
The numerous oxidation states of the element boron bring great challenges in containing its contamination in receptor bodies. This scenario increases significantly due to the widespread use of boron compounds in various industries in recent years. For this reason, the removal of this contaminant is receiving worldwide attention. Although adsorption is a promising method in boron removal, finding suitable adsorbents, that is, those with high efficiency, and feasible remains a constant challenge. Hence, this review presents the boron removal methods in comparison to costs of adsorbents, reaction mechanisms, economic viability, continuous bed application, and regeneration capacity. In addition, the approach of multivariate algorithms in the solution of multiobjective problems can enable the optimized conditions of dosage of adsorbents and coagulants, pH, and initial concentration of boron. Therefore, this review sought to comprehensively and critically demonstrate strategic issues that may guide the choice of method and adsorbent or coagulant material in future research for bench and industrial scale boron removal.
Collapse
Affiliation(s)
- Jéssica Carolaine Vieira de Azevedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Ana Paula Fonseca Maia de Urzedo
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Patrícia da Luz Mesquita
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Roberto Guimarães da Cunha Filho
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Eduardo Prado Baston
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Gisella Lamas Samanamud
- Department of Chemical and Materials Engineering, University of Kentucky - Paducah extended campus, Paducah, KY, 42001, USA
| | - Luzia Lima Rezende Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil
| | - Fabiano Luiz Naves
- Chemical Engineering Department, Research Group On Waste Treatment and Management Processes, Federal University of Sao João Del Rei, São João Del Rei, MG, Brazil.
| |
Collapse
|
2
|
Ji Y, Dong S, Huang Y, Yue C, Zhu H, Wu D, Zhao J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. MEMBRANES 2024; 14:32. [PMID: 38392659 PMCID: PMC10890694 DOI: 10.3390/membranes14020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Graphene oxide (GO) with its atomic thickness and abundant functional groups holds great potential in molecular-scale membrane separation. However, constructing high-speed and highly selective water transport channels within GO membranes remains a key challenge. Herein, sulfonato calix[n]arenes (SCn) molecules with a cavity structure, hydrophilic entrance, and hydrophobic wall were incorporated into GO interlayer channels through a layer-by-layer assembly approach to facilitate water permeation in a water/ethanol separation process. The hydrophilic entrance enables preferential access of water molecules to the cavity over ethanol molecules, while the high hydrophobicity of the cavity wall confers low resistance for water diffusion. After incorporating SCn molecules, the membrane shows a remarkable increase in the water/ethanol separation factor from 732 to 1260, while the permeate flux also increases by about 50%. In addition, the strong electrostatic interactions between the building blocks endow the membrane with excellent swelling resistance even under a high water content. This work provides an effective strategy of constructing high-efficiency water transport channels in membrane.
Collapse
Affiliation(s)
- Yufan Ji
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Shurui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiping Huang
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Changhai Yue
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Hao Zhu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Dan Wu
- China Construction Industrial & Energy Engineering Group, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Tao SN, Wang Y, Fu ZJ, Wang YM, Lu QL, Tang MJ, Wang WJ, Mamba BB, Sun SP, Wang ZY. Sodium hypochlorite activated dual-layer hollow fiber nanofiltration membranes for mono/divalent ions separation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Zhou Z, Lu TD, Sun SP, Wang Q. Roles and gains of coordination chemistry in nanofiltration membrane: A review. CHEMOSPHERE 2023; 318:137930. [PMID: 36693478 DOI: 10.1016/j.chemosphere.2023.137930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The nanofiltration (NF) membranes with the specific separation accuracy for molecules with the size of 0.5-2 nm have been applied in various industries. However, the traditional polymeric NF membranes still face problems like the trade-off effect, organic solvent consumption, and weak durability in harsh conditions. The participation of coordination action or metal-organic coordination compounds (MOCs) brings the membrane with uniform pores, better antifouling properties, and high hydrophilicity. Some of the aqueous-phase reactions also help to introduce a green fabrication process to NF membranes. This review critically summarizes the recent research progress in coordination chemistry relevant NF membranes. The participation of coordination chemistry was classified by the various functions in NF membranes like additives, interlayers, selective layers, coating layers, and cross-linkers. Then, the effect and mechanism of the coordination chemistry on the performance of NF membranes are discussed in depth. Perspectives are given for the further promotion that coordination chemistry can make in NF processes. This review also provides comprehensive insight and constructive guidance on high-performance NF membranes with coordination chemistry.
Collapse
Affiliation(s)
- Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Tian-Dan Lu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
5
|
|
6
|
Yagmur Goren A, Recepoglu YK, Karagunduz A, Khataee A, Yoon Y. A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks. CHEMOSPHERE 2022; 293:133587. [PMID: 35031249 DOI: 10.1016/j.chemosphere.2022.133587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based compounds have gained attention of researchers for use in boron removal due to their properties, which make them a viable and low cost adsorbent with a high availability, as well as environmental friendliness and high removal efficiency. The removal of boron utilizing carbon-based materials, including activated carbon (AC), graphene oxide (GO), and carbon nanotubes (CNTs), is extensively reviewed in this paper. The effects of the operating conditions, kinetics, isotherm models, and removal methods are also elaborated. The impact of the modification of the lifetime of carbon-based materials has also been explored. Compared to unmodified carbon-based materials, modified materials have a significantly higher boron adsorption capability. It has been observed that adding various elements to carbon-based materials improves their surface area, functional groups, and pore volume. Tartaric acid, one of these doped elements, has been employed to successfully improve the boron removal and adsorption capabilities of materials. An assessment of the health risk posed to humans by boron in treated water utilizing carbon-based materials was performed to better understand the performance of materials in real-world applications. Furthermore, the boron removal effectiveness of carbon-based materials was evaluated, as well as any shortcomings, future perspectives, and gaps in the literature.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
7
|
An attempt to enhance water flux of hollow fiber polyamide composite nanofiltration membrane by the incorporation of hydrophilic and compatible PPTA/PSF microparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Trifi IM, Chaabane L, Dammak L, Baklouti L, Hamrouni B. Response Surface Methodology for Boron Removal by Donnan Dialysis: Doehlert Experimental Design. MEMBRANES 2021; 11:membranes11100731. [PMID: 34677497 PMCID: PMC8540363 DOI: 10.3390/membranes11100731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
The removal of boron by Donnan dialysis from aqueous solutions has been studied according to response surface methodology (RSM). First, a preliminary study was performed with two membranes (AFN and ACS) in order to determine the experimental field based on different parameters, such as the pH of the feed compartment, the concentration of counter-ions in the receiver compartment, and the concentration of boron in the feed compartment. The best removal rate of boron was 75% with the AFN membrane, but only 48% with the ACS membrane. Then, a full-factor design was developed to determine the influence of these parameters and their interactions on the removal of boron by Donnan dialysis. The pH of the feed compartment was found to be the most important parameter. The RSM was applied according to the Doehlert model to determine the optimum conditions ([B] = 66 mg/L, pH = 11.6 and [Cl−] = 0.5 mol/L) leading to 88.8% of boron removal with an AFN membrane. The use of the RSM can be considered a good solution to determine the optimum condition for 13.8% compared to the traditional “one-at-a-time” method.
Collapse
Affiliation(s)
- Ikhlass Marzouk Trifi
- Laboratoire de Recherche Dessalement et Traitement des Eaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia; (I.M.T.); (B.H.)
| | - Lobna Chaabane
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais, France;
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais, France;
- Correspondence:
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Béchir Hamrouni
- Laboratoire de Recherche Dessalement et Traitement des Eaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia; (I.M.T.); (B.H.)
| |
Collapse
|
9
|
Lee S, Wang G, Ji N, Zhang M, Wang D, Sun L, Meng W, Zheng Y, Li Y, Wu Y. Synthesis, characterizations and kinetics of MOF‐5 as herbicide vehicle and its controlled release in PVA/ST biodegradable composite membranes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shaoxiang Lee
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Guohui Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Nana Ji
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Meng Zhang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Dong Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Lishui Sun
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Wenqiao Meng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuqi Zheng
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yanxin Li
- College of Environment and Safety Engineering Qingdao University of Science and Technology No.53, Zhengzhou Road Qingdao 266042 People's Republic of China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
- Shandong Engineering Technology Research Center for Advanced Coating Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Yuting Wu
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| |
Collapse
|