1
|
Yu H, Guan J, Chen Y, Sun Y, Zhou S, Zheng J, Zhang Q, Li S, Zhang S. Large-Area Soluble Covalent Organic Framework Oligomer Coating for Organic Solution Nanofiltration Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305613. [PMID: 37712119 DOI: 10.1002/smll.202305613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.
Collapse
Affiliation(s)
- Huiting Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuxuan Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shengyang Zhou
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Lin Z, Zhong J, Sun R, Wei Y, Sun Z, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302654. [PMID: 37381631 PMCID: PMC10477839 DOI: 10.1002/advs.202302654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Special separation membranes are widely employed for separation and purification purposes under challenging operating conditions due to their low energy consumption, excellent solvent, and corrosion resistance. However, the development of membranes is limited by corrosion-resistant polymer substrates and precise interfacial separation layers. Herein, polyaniline (PANI) is employed to achieve insitu anchoring of multiple interfaces, resulting in the fabrication of polyaniline@graphene oxide/polyether ether ketone (PANI@GO/PEEK) membranes. Insitu growth of PANI achieves the adequate bonding of the PEEK substrate and GO separation interface, which solves the problem of solution processing of PEEK and the instability of GO layers. By bottom-up confined polymerization of aniline, it could control the pore size of the separation layer, correct defects, and anchor among polymer, nano-separation layer, and nano-sheet. The mechanism of membrane construction within the confined domain and micro-nano structure modulation is further explored. The membranes demonstrate exceptional stability realizing over 90% rejection in 2 m HCl, NaOH, and high temperatures. Additionally, -membranes exhibit remarkable durability after 240 days immersion and 100 h long-term operation, which display the methanol flux of 50.2 L m-2 h-1 and 92% rejection of AF (585 g mol-1 ). This method substantially contributes to special separation membranes by offering a novel strategy.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jundong Zhong
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Runyin Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yingzhen Wei
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Liyuan Chen
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
3
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
4
|
Zhou S, Hu Y, Xin W, Fu L, Lin X, Yang L, Hou S, Kong XY, Jiang L, Wen L. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208640. [PMID: 36457170 DOI: 10.1002/adma.202208640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Charge-governed ion transport is the vital property of nanofluidic channels for salinity-gradient energy harvesting and other electrochemical energy conversion technologies. 2D nanofluidic channels constructed by nanosheets exhibit great superiority in ion selectivity, but a high ion transport rate remains challenging due to the insufficiency of intrinsic surface charge density in nanoconfinement. Herein, extrinsic surface charge into nanofluidic channels composed of surfactant-assisted sulfonated covalent organic nanosheets (SCONs), which enable tunable ion transport behaviors, is demonstrated. The polar moiety of surfactant is embedded in SCONs to adjust in-plane surface charges, and the aggregation of nonpolar moiety results in the sol-to-gel transformation of SCON solution for membrane fabrication. The combination endows SCON/surfactant membranes with considerable water-resistance, and the designable extrinsic charges promise fast ion transport and high ion selectivity. Additionally, the SCON/surfactant membrane, serving as a power generator, exhibits huge potential in harvesting salinity-gradient energy where corresponding output power density can reach up to 9.08 W m-2 under a 50-fold salinity gradient (0.5 m NaCl|0.01 m NaCl). The approach to extrinsic surface charge provides new and promising insight into regulating ion transport behaviors.
Collapse
Affiliation(s)
- Shengyang Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhao Hu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Fu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangbin Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linsen Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuhua Hou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Won GY, Park A, Yoo Y, Park YI, Lee JH, Kim IC, Cho YH, Park H. Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration. MEMBRANES 2023; 13:104. [PMID: 36676911 PMCID: PMC9864663 DOI: 10.3390/membranes13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In research on membranes, the addition of co-solvents to the polymer dope solution is a common method for tuning the morphology and separation performance. For organic solvent nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high separation properties and stability by adding acetonitrile (MeCN) to the dope solution, followed by crosslinking with dibromo-p-xylene. Accordingly, changes in the membrane structure and separation properties were investigated when MeCN was added. PBI/MeCN membranes with a dense and thick active layer and narrow finger-like macrovoids exhibited superior rejection properties in the ethanol solution compared with the pristine PBI membrane. After crosslinking, they displayed superior rejection properties (96.56% rejection of 366-g/mol polypropylene glycol). In addition, the membranes demonstrated stable permeances for various organic solvents, including acetone, methanol, ethanol, toluene, and isopropyl alcohol. Furthermore, to evaluate the feasibility of the modified PBI OSN membranes, ecamsule, a chemical product in the fine chemical industry, was recovered. Correspondingly, the efficient recovery of ecamsule from a toluene/methanol solution using the OSN process with PBI/MeCN membranes demonstrated their applicability in many fine chemical industries.
Collapse
Affiliation(s)
- Ga Yeon Won
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahrumi Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Youngmin Yoo
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - You-In Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Chul Kim
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Lin Z, Cao N, Li C, Sun R, Li W, Chen L, Sun Y, Zhang H, Pang J, Jiang Z. Micro-nanostructure tuning of PEEK porous membrane surface based on PANI in-situ growth for antifouling ultrafiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Solvent-resistant porous membranes using poly(ether—ether ketone): preparation and application. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Preparation of microporous organic solvent nanofiltration (OSN) composite membrane from a novel tris-phenol monomer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Fang Q, Liu Q, Xie Z, Hill MR, Zhang K. Two dimensional laminar MoS2 modified PTMSP membranes with improved organic solvent nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Aristizábal SL, Upadhyaya L, Falca G, Gebreyohannes AY, Aijaz MO, Karim MR, Nunes SP. Acid-free fabrication of polyaryletherketone membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Sun Y, Chen K, Zhang C, Yu H, Wang X, Yang D, Wang J, Huang G, Zhang S. A Novel Material for High-Performance Li-O 2 Battery Separator: Polyetherketone Nanofiber Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201470. [PMID: 35460175 DOI: 10.1002/smll.202201470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The properties of separators significantly affect the efficiency, stability, and safety of the lithium-based batteries. Therefore, the improvement of the separator material is critical. Polyetherketone (PEK) has excellent general properties, such as mechanical strength, chemical stability, and thermal stability. Thus, it is expected to be an optimal separator material. However, its low solubility-induced poor processibility makes it difficult to be used for nanoscale product manufacturing. In this work, the soluble precursor polymer is prepared by introducing a "protecting" group into monomer, and fabricated into nanofiber membrane, which can be converted into polyetherketone nanofiber membrane by a simple acid treatment. The membrane prepared by this chemical-induced crystallization method exhibits superior chemical, thermal stability, and mechanical strength. Li-O2 batteries with the fabricated membrane as separator have a high cycling stability (194 cycles at 200 mA g-1 and 500 mAh g-1 ). This work broadens the application field of PEK and provides a potential route for battery separators.
Collapse
Affiliation(s)
- Yuxuan Sun
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Kai Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chi Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huiting Yu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xue Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Dongyue Yang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jin Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Gang Huang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Jin L, Hu L, Liang S, Wang Z, Xu G, Yang X. A novel organic solvent nanofiltration (OSN) membrane fabricated by Poly(m-phenylene isophthalamide) (PMIA) under large-scale and continuous process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Liu J, Gao L, Di M, Hu L, Sun X, Wu X, Jiang X, Dai Y, Yan X, He G. Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lin Z, Cao N, Sun Z, Li W, Sun Y, Zhang H, Pang J, Jiang Z. Based On Confined Polymerization: In Situ Synthesis of PANI/PEEK Composite Film in One-Step. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103706. [PMID: 34766471 PMCID: PMC8728828 DOI: 10.1002/advs.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 05/11/2023]
Abstract
Confined polymerization is an effective method for precise synthesis, which can further control the micro-nano structure inside the composite material. Polyaniline (PANI)-based composites are usually prepared by blending and original growth methods. However, due to the strong rigidity and hydrogen bonding of PANI, the content of PANI composites is low and easy to agglomerate. Here, based on confined polymerization, it is reported that polyaniline /polyether ether ketone (PANI/PEEK) film with high PANI content is synthesized in situ by a one-step method. The micro-nano structure of the two polymers in the confined space is further explored and it is found that PANI grows in the free volume of the PEEK chain, making the arrangement of the PEEK chain more orderly. Under the best experimental conditions, the prepared 16 µm-PANI/PEEK film has a dielectric constant of 205.4 (dielectric loss 0.401), the 75 µm-PANI/PEEK film has a conductivity of 3.01×10-4 S m-1 . The prepared PANI/PEEK composite film can be further used as electronic packaging materials, conductive materials, and other fields, which has potential application prospects in anti-static, electromagnetic shielding materials, corrosion resistance, and other fields.
Collapse
Affiliation(s)
- Ziyu Lin
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Ning Cao
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhonghui Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Wenying Li
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Yirong Sun
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Haibo Zhang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Jinhui Pang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| | - Zhenhua Jiang
- Key Laboratory of High Performance Plastics (Jilin University)Ministry of EducationNational & Local Joint Engineering Laboratory for Synthetic Technology of High Performance PolymerCollege of ChemistryJilin UniversityJilin UniversityChangchun130012P. R. China
| |
Collapse
|