1
|
Yang C, Liu Y, Duan G, Zhang C, Huang Y, Li S, Jiang S. Research progress on improving dispersion stability of nanocellulose in different media: A review. Int J Biol Macromol 2025; 304:140967. [PMID: 39952515 DOI: 10.1016/j.ijbiomac.2025.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Nanocellulose has been widely used in various fields due to its good biocompatibility, mechanical properties, large specific surface area and environmental friendliness. Among these applications, uniformly dispersing nanocellulose in various media to improve its performance is an application with good development prospects. However, due to the presence of surface hydroxyl groups, nanocellulose tends to form aggregates between molecular chains and is less compatible with nonpolar solvents, thus making it difficult to be stably dispersed in solvents. How to break the aggregation between cellulose and improve its compatibility with the medium has become a challenging issue. In this paper, the dispersion system is classified into polar medium, nonpolar medium and polymer matrix according to the polarity and state of the medium, and a review is presented on how to improve the dispersion stability of nanocellulose in different media. The methods of using surface modification to improve the dispersion stability of nanocellulose in different media, such as carboxylation, amidation, and grafting of long-chain molecules to reduce the aggregation among nanocellulose and to improve the compatibility with solvents, are highlighted. Finally, suggestions are made for future research directions.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Chang Z, Liang D, Sun S, Zheng S, Sun K, Wang H, Chen Y, Guo D, Zhao H, Sha L, Jiang W. Innovative modification of cellulose fibers for paper-based electrode materials using metal-organic coordination polymers. Int J Biol Macromol 2024; 264:130599. [PMID: 38442834 DOI: 10.1016/j.ijbiomac.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.
Collapse
Affiliation(s)
- Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shirong Sun
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuo Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kexin Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haiping Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenyan Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Yuan Y, Chen H, Peng L, Liu Y, Zou J, Cheng L, Wang Y, Xia X, Zhou H. Preparation of cellulose acetate based flexible separator and its application in zinc-air batteries. NANOTECHNOLOGY 2024; 35:135601. [PMID: 37995369 DOI: 10.1088/1361-6528/ad0f56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Flexible solid-state zinc-air batteries as a wearable energy storage device with great potential, and their separators, which control ion permeability, inhibit zinc dendrite generation, and regulate catalytic active sites, have been developed as gel electrolyte separators with high retention of electrolyte uptake. However, the gel electrolyte separator still has problems such as poor affinity with the electrolyte and poor ionic conductivity, which limits its further application. In order to further improve the electrolyte absorption, ionic conductivity and mechanical strength of cellulose acetate(CA)/polyvinyl alcohol (PVA) nanofibers, TiO2was added to CA/PVA to increase the porosity, and glutaraldehyde (GA) was used to modify the CA/PVA/TiO2separator by acetal reaction with CA and PVA to make the molecules closely linked. The results shows that the optimal mass fractions of TiO2and GA were 2% and 5%, respectively. At this time, the porosity and absorption rate of the separator increased from 48% to 68.2% and 142.4% to 285.3%, respectively. The discharge capacity reached 179 mA cm-3, and the cycle stability rate was 89% after 7 stable constant current charge/discharge cycles.
Collapse
Affiliation(s)
- Yifan Yuan
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Hongyou Chen
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Liangkui Peng
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Yingqi Liu
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Jin Zou
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Lu Cheng
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Ying Wang
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Xin Xia
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Huimin Zhou
- College of Textiles and Clothing, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
4
|
Yang C, Zhu Y, Tian Z, Zhang C, Han X, Jiang S, Liu K, Duan G. Preparation of nanocellulose and its applications in wound dressing: A review. Int J Biol Macromol 2024; 254:127997. [PMID: 37949262 DOI: 10.1016/j.ijbiomac.2023.127997] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Nanocellulose, as a nanoscale polymer material, has garnered significant attention worldwide due to its numerous advantages including excellent biocompatibility, thermal stability, non-toxicity, large specific surface area, and good hydrophilicity. Various methods can be employed for the preparation of nanocellulose. Traditional approaches such as mechanical, chemical, and biological methods possess their own distinct characteristics and limitations. However, with the growing deterioration of our living environment, several green and environmentally friendly preparation techniques have emerged. These novel approaches adopt eco-friendly technologies or employ green reagents to achieve environmental sustainability. Simultaneously, there is a current research focus on optimizing traditional nanocellulose preparation methods while addressing their inherent drawbacks. The combination of mechanical and chemical methods compensates for the limitations associated with using either method alone. Nanocellulose is widely used in wound dressings owing to its exceptional properties, which can accelerate the wound healing process and reduce patient discomfort. In this paper, the principle, advantages and disadvantages of each preparation method of nanocellulose and the research findings in recent years are introduced Moreover, this review provides an overview of the utilization of nanocellulose in wound dressing applications. Finally, the prospective trends in its development alongside corresponding preparation techniques are discussed.
Collapse
Affiliation(s)
- Chen Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqin Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Heidari Y, Noroozian E, Maghsoudi S. Improvement of salt rejection efficiency of cellulose acetate membrane through modification by poly(amidoamine) dendrimer-functionalized graphene oxide. Heliyon 2023; 9:e19171. [PMID: 37662781 PMCID: PMC10469077 DOI: 10.1016/j.heliyon.2023.e19171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
In this work, the grafting method using graphene oxide (GO) - poly(amidoamine) dendrimer (PAMAM) nanocomposite as filler for the functionalization of cellulose acetate membrane is reported. Here, cellulose acetate membrane incorporated by nanocomposite in the polymer solution was prepared through the phase inversion technique. The effect of embedding GO-PAMAM on the characterization properties and rejection performance was studied. The results of zeta potential, thermogravimetric analysis (TGA), contact angle measurements, Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM) established successful modification. Based on the data found, adding the filler improves membrane properties. Loading of 1.00 wt% of GO/PAMAM was found to be the optimized amount of the filler in the membrane processing with the highest porosity (74%), antifouling behavior (88%), reversible fouling ratio (45.71%), and the least contact angle (∼40°). Hence, the rejection and permeability tests of the prepared membrane were examined by Na2SO4 (98.40%), NaCl (52%), and MgCl2 (57%) solutions through a lab dead-end cell. According to the results, the value of salt rejection established more permeability and rejection than neat cellulose acetate membrane.
Collapse
Affiliation(s)
- Y. Heidari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - E. Noroozian
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sh Maghsoudi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Liang D, Chang Z, Chen Y, Chen J, Zhao H, Sha L, Guo D. High mass loading paper-based electrode material with cellulose fibers under coordination of zirconium oxyhydroxide nanoparticles and sulfosalicylic acid. Int J Biol Macromol 2023; 244:125414. [PMID: 37327930 DOI: 10.1016/j.ijbiomac.2023.125414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
With the rapid expansion of the flexible electronics market, it is critical to develop high-performance flexible energy storage electrode materials. Cellulose fibers, which are sustainable, low cost, and flexible, fully meet the requirements of flexible electrode materials, but they are electrically insulating and cause a decrease in energy density. In this study, high-performance paper-based flexible electrode materials (PANI:SSA/Zr-CFs) were prepared with cellulose fibers and polyaniline. A high mass loading of polyaniline was wrapped on zirconia hydroxide-modified cellulose fibers under metal-organic acid coordination through a facile in situ chemical polymerization process. The increase in mass loading of PANI on cellulose fibers not only improves the electrical conductivity but also enhances the area-specific capacitance of the flexible electrodes. The results of electrochemical tests show that the area specific capacitance of the PANI:SSA/Zr-CFs electrode is 4181 mF/cm2 at 1 mA/cm2, which is more than two times higher than that of the electrode with PANI on pristine CFs. This work provides a new strategy for the design and manufacture of high-performance flexible electronic electrodes based on cellulose fibers.
Collapse
Affiliation(s)
- Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Jianbin Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China; Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
7
|
Alghuwainem YAA, Gouda M, Khalaf MM, Heakal FET, Albalwi HA, Elmushyakhi A, El-Lateef HMA. Highlighting the Compositional Changes of the Sm 2O 3/MgO-Containing Cellulose Acetate Films for Wound Dressings. Polymers (Basel) 2022; 14:polym14224964. [PMID: 36433092 PMCID: PMC9697631 DOI: 10.3390/polym14224964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The development of wound dressing materials with appropriate specifications is still a challenge to overcome the current limitations of conventional medical bandages. In this regard, simple and fast methods are highly recommended, such as film casting. In addition, deliverable nanoparticles that can act to accelerate wound integration, such as samarium oxide (Sm2O3) and magnesium oxide (MgO), might represent a potential design with a novel compositional combination. In the present research, the casted film of cellulose acetate (CA) was mixed with different ratios of metal oxides, such as samarium oxide (Sm2O3) and magnesium oxide (MgO). The tests used for the film examination were X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM graphs of CA films represent the surface morphology of Sm2O3@CA, MgO@CA, and Sm2O3/MgO/GO@CA. It was found that the scaffolds' surface contained a high porosity ratio with diameters of 1.5-5 µm. On the other hand, the measurement of contact angle exhibits a variable trend starting from 27° to 29° for pristine CA and Sm2O3/MgO/GO@CA. The cell viability test exhibits a noticeable increase in cell growth with a decrease in the concentration. In addition, the IC50 was determined at 6 mg/mL, while the concentration of scaffolds of 20 mg/mL caused cellular growth to be around 106%.
Collapse
Affiliation(s)
- Yousef A. A. Alghuwainem
- Department of Veterinary Public Health and Care, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | | | - Hanan A. Albalwi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar 73213, Saudi Arabia
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| |
Collapse
|
8
|
Sadare OO, Yoro KO, Moothi K, Daramola MO. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review. MEMBRANES 2022; 12:320. [PMID: 35323795 PMCID: PMC8951035 DOI: 10.3390/membranes12030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
The improvement of membrane applications for wastewater treatment has been a focal point of research in recent times, with a wide variety of efforts being made to enhance the performance, integrity and environmental friendliness of the existing membrane materials. Cellulose nanocrystals (CNCs) are sustainable nanomaterials derived from microorganisms and plants with promising potential in wastewater treatment. Cellulose nanomaterials offer a satisfactory alternative to other environmentally harmful nanomaterials. However, only a few review articles on this important field are available in the open literature, especially in membrane applications for wastewater treatment. This review briefly highlights the circular economy of waste lignocellulosic biomass and the isolation of CNCs from waste lignocellulosic biomass for membrane applications. The surface chemical functionalization technique for the preparation of CNC-based materials with the desired functional groups and properties is outlined. Recent uses of CNC-based materials in membrane applications for wastewater treatment are presented. In addition, the assessment of the environmental impacts of CNCs, cellulose extraction, the production techniques of cellulose products, cellulose product utilization, and their end-of-life disposal are briefly discussed. Furthermore, the challenges and prospects for the development of CNC from waste biomass for application in wastewater treatment are discussed extensively. Finally, this review unraveled some important perceptions on the prospects of CNC-based materials, especially in membrane applications for the treatment of wastewater.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Kelvin O. Yoro
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA;
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
9
|
Mahdavi H, Amin Kerachian M, Abazari M. Synergistic effect of GO@SiO2 and GO@ZnO nano-hybrid particles with PVDF-g-PMMA copolymer in high-flux ultrafiltration membrane for oily wastewater treatment and antifouling properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Zhu X, Pan Z, Jiang H, Du Y, Chen R. Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Yao A, Yan Y, Tan L, Shi Y, Zhou M, Zhang Y, Zhu P, Huang S. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Zhou H, Gu J, Zhang W, Hu C, Lin X. Rational Design of Cellulose Nanofibrils Separator for Sodium-Ion Batteries. Molecules 2021; 26:molecules26185539. [PMID: 34577010 PMCID: PMC8471150 DOI: 10.3390/molecules26185539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Cellulose nanofibrils (CNF) with high thermal stability and excellent electrolyte wettability attracted tremendous attention as a promising separator for the emerging sodium-ion batteries. The pore structure of the separator plays a vital role in electrochemical performance. CNF separators are assembled using the bottom-up approach in this study, and the pore structure is carefully controlled through film-forming techniques. The acid-treated separators prepared from the solvent exchange and freeze-drying demonstrated an optimal pore structure with a high electrolyte uptake rate (978.8%) and Na+ transference number (0.88). Consequently, the obtained separator showed a reversible specific capacity of 320 mAh/g and enhanced cycling performance at high rates compared to the commercial glass fiber separator (290 mAh/g). The results highlight that CNF separators with an optimized pore structure are advisable for sodium-ion batteries.
Collapse
Affiliation(s)
| | | | | | - Chuanshuang Hu
- Correspondence: (C.H.); (X.L.); Tel.: +86-(20)-85282568 (X.L.); Fax: +86-(20)-85281885 (X.L.)
| | - Xiuyi Lin
- Correspondence: (C.H.); (X.L.); Tel.: +86-(20)-85282568 (X.L.); Fax: +86-(20)-85281885 (X.L.)
| |
Collapse
|