1
|
Aftab B, Yin G, Maqbool T, Hur J, Wang J. Enhanced landfill leachate treatment performance by adsorption-assisted membrane distillation. WATER RESEARCH 2024; 250:121036. [PMID: 38134858 DOI: 10.1016/j.watres.2023.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation.
Collapse
Affiliation(s)
- Bilal Aftab
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Ly QV, Cui L, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang Z. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review ✰. WATER RESEARCH 2023; 230:119577. [PMID: 36638735 DOI: 10.1016/j.watres.2023.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Quang Viet Ly
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Lele Cui
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Waris Khan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Hou C, Cheng X, Zhang X, Zhu X, Xu J, Luo X, Wu D, Liang H. Effect of ferrous-activated calcium peroxide oxidation on forward osmosis treatment of algae-laden water: Membrane fouling mitigation and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160100. [PMID: 36370779 DOI: 10.1016/j.scitotenv.2022.160100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Forward osmosis (FO) is a high-efficiency and low-energy consumption way for algae-laden water treatment, whereas membrane fouling is still an unavoidable problem in its practical application. In this work, a strategy of ferrous-activated calcium peroxide (Fe(II)/CaO2) was proposed to control FO membrane fouling in the purification of algae-laden water. With the treatment of Fe(II)/CaO2, the aggregation of algal contaminants was promoted, the cell viability and integrity were well preserved, and the fluorescent organics were efficiently removed. With respect to the fouling of FO membrane, the flux decline was generally alleviated, and the flux recovery was promoted to varying degrees under different process conditions. It could be revealed through the extended Derjaguin-Landau-Verwey-Overbeek theory that the adhesion of contaminants and membrane surfaces was reduced by Fe(II)/CaO2 treatment. The interface morphologies and functional groups of membrane verified that Fe(II)/CaO2 could mitigate the fouling by reducing the amount of algal contaminants adhering to the FO membrane. The co-coagulation of in-situ Fe(III) together with Ca(OH)2, as well as the oxidation of •OH were the main mechanisms for fouling mitigation. In sum, the Fe(II)/CaO2 process could effectively improve the efficiency of FO for algae-laden water treatment, and has broad application prospects.
Collapse
Affiliation(s)
- Chengsi Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
4
|
Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Aftab B, Truong HB, Cho J, Hur J. Enhanced performance of a direct contact membrane distillation system via in-situ thermally activated H2O2 oxidation for the treatment of landfill leachate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zhang L, Graham N, Kimura K, Li G, Yu W. Targeting membrane fouling with low dose oxidant in drinking water treatment: Beneficial effect and biological mechanism. WATER RESEARCH 2022; 209:117953. [PMID: 34933160 DOI: 10.1016/j.watres.2021.117953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Membrane fouling is the principal factor that currently limits the performance of gravity-driven membrane (GDM) filtration systems in drinking water treatment. In this study, the benefits of applying a low dose (approximately 0.1 mg·L-1) of environmentally benign oxidants, both H2O2 and KMnO4, as a pretreatment to GDM filtration system has been evaluated in terms of reduced membrane fouling and treated water quality. While both oxidants improved permeate flux, the effect of KMnO4 was greater than H2O2. Both oxidants reduced the size of influent organic substances and those of large molecular weight (>20 kDa), such as biopolymers, disappeared. The thickness of the fouling layers was substantially reduced after oxidation, and the KMnO4 system had a markedly different physical structure of fouling layer, with an apparent sub-layer of δ-MnO2 nanosheets below a fouling sub-layer. The formation of the δ-MnO2 nanosheets sub-layer appeared to protect the underlying membrane pores from contamination by influent organics. Oxidation pretreatment reduced the presence of proteins and polysaccharides in the fouling layers and significantly altered the bacterial community structures (p < 0.01) and decreased biodiversity. The microbial species that secreted amounts of extracellular polymeric substances (EPS), such as Xanthobacter, were not eliminated in the H2O2 fouling layer, while for the KMnO4 system, the manganese oxidizing bacteria (MOB; e.g., Pseudoxanthomonas) and metal-resistant genus Acidovorax, dominated the community.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Liu J, Gu Z, Wang X, Li Q. The molecular differences of young and mature landfill leachates: Molecular composition, chemical property, and structural characteristic. CHEMOSPHERE 2022; 287:132215. [PMID: 34826915 DOI: 10.1016/j.chemosphere.2021.132215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is a highly contaminated and complex organic wastewater. It can be categorized into young (YL) and mature leachate (ML) based on the landfill age, with significant differences in the composition of organic matter, resulting from the significant differences in humification degree. To compare the organic composition of YL and ML, ESI FT-ICR MS was applied to systematically investigate their molecular composition, chemical properties, and structural characteristics. The molecular weight of YL organics was lower than that of ML organics. In addition, O/C and H/C distributions of YL and ML organics were significantly different. YL mainly consisted of CHO compounds and aliphatic compounds. ML mainly consisted of CHON compounds and high oxygen highly unsaturated and phenolic compounds. The unsaturation degree of YL organics was expressed by carbon double bond equivalents ((DBE-C)/C = -0.0336) and was not significantly different from that of ML (-0.0241), but nominal oxidation state of carbon (NOSC = -0.8010) and aromaticity (AImod = 0.1254) of YL were significantly lower than of ML (NOSC = -0.0692; AImod = 0.2464). In addition, YL and ML organics were rich in functional groups, but the YL organics contained more straight-chain structures. The ML organics contained fewer straight-chain structures, a larger number of benzene-ring structures, and more oxygen-containing functional groups. The more complex structural properties of ML organics may be the result of the transformation of YL organics after a long series of reactions, including electrocyclization, decarboxylation, and hydrogen abstraction reactions, which eventually increased the humification degree of leachate organic matter.
Collapse
Affiliation(s)
- Jie Liu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Xiqin Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China.
| |
Collapse
|
9
|
Guo C, Qin X, Guo R, Lv Y, Li M, Wang Z, Li T. Optimization of heterogeneous Fenton-like process with Cu-Fe@CTS as catalyst for degradation of organic matter in leachate concentrate and degradation mechanism research. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:220-230. [PMID: 34454188 DOI: 10.1016/j.wasman.2021.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The heterogeneous Fenton-like process with bimetallic chelated magnetic chitosan aerogel (Cu-Fe@CTS) as catalyst was applied to treat pre-coagulated leachate nanofiltration concentrate. The process conditions were optimized by Box-Behnken Design (BBD) and the maximum UV254 removal reached 96.06% under the conditions of temperature 87.62 °C, oxidant dosage 0.2395 mol/L and catalyst dosage 1 g/L. The TOC concentration was reduced from 847.5 to 99.7 mg/L and COD concentration was reduced from 1625 to 464 mg/L. The three-dimensional (3D) fluorescence analysis showed that most of Fulvic acid-like (FA-like) was removed. The adsorption experiment showed that the catalyst reached the adsorption balanced after 60 min and the corresponding FA adsorption removal reached 14.1%. The addition of Tert-butanol (TBA) reduced the FA removal by 59.4%, indicating that the hydroxyl radicals (OH) was the main active species. Experiments of the OH capture at different pH showed that the Fenton-like system produced more OH at pH of 4, at which the maximum FA removal was 96.61%, while the FA removal still reached 94.26% at pH of 7. The OH capture at different temperature showed that the Fenton-like system produced more OH at 90 °C. KI and TBA shielding experiments showed that OH was produced on the catalyst surface rather than being produced by catalysis of free metal ions in the solution.
Collapse
Affiliation(s)
- Chengrui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xia Qin
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Rui Guo
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yue Lv
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mingran Li
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ziyuan Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tinghui Li
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|