1
|
Jian M, Ding X, Li Q, Zhao Y, Wang B, Yang L, Jiang L, Gao J. Artificial Proton Channel Membrane with Self-Amplified Selectivity for Simultaneous Waste Acid Recovery and Power Generation. ACS NANO 2025; 19:16405-16414. [PMID: 40285724 DOI: 10.1021/acsnano.4c16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Proton channels have both high permeability and selectivity, a property that remains unparalleled by artificial materials yet is highly demanded in many applications, including acid recovery and power generation. This work takes inspiration from the structure and surface chemistry of biological proton channels and presents a method to construct covalent organic framework (COF) membranes consisting of high-performance artificial proton channels. The membrane was purposefully rendered amorphous, which eliminates most of the nanoscale pores and induces high steric hindrance to ions. On the other hand, the channels were functionalized with hydrogen-donating groups, allowing protons to hop fast. Interestingly, we found that the presence of hydrated protons causes additional hindrance to ions and thus self-amplifies the proton selectivity. Consequently, the proton selectivity against toxic heavy metal ions is up to 104, significantly surpassing that of commercial acid-recovery membranes. The permeability is comparable to that of biological proton channels (a few mol m-2 h-1). Such membranes allow us to recycle acid from industrial waste brines by a simple diffusion dialysis process without the risk of toxic ion leakage. At the same time, the entropy released by the proton diffusion can be harvested to generate power, achieving a power density superior to that of most previously reported membranes for osmotic energy harvesting.
Collapse
Affiliation(s)
- Min Jian
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Xuan Ding
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Qi Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Yongye Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Lijun Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100090, P. R. China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P. R. China
| |
Collapse
|
2
|
Tian L, Wang M, Liao G, Liu B, Sun Y, Hu Y, Lu Z. Semi-Interpenetrating Polymer Network Anion Exchange Membranes Based on Quaternized Polybenzoxazine and Poly(Vinyl Alcohol-Co-Ethylene) for Acid Recovery by Diffusion Dialysis. Chemistry 2024; 30:e202401361. [PMID: 39031662 DOI: 10.1002/chem.202401361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Acid recovery from acidic waste is a pressing issue in current times. Chemical methods for recovery are not economically feasible and require significant energy input to save the environment. This study reported a semi-interpenetrating polymer network (semi-IPN) anion exchange membranes (AEMs) for acid recovery by diffusion dialysis with excellent dimensional stability, high oxidation stability, good acid dialysis coefficient (UH +) and high separation factor (S). Semi-IPN AEMs are prepared by ring-open cross-linked quaternized polybenzoxazine (AQBZ) with poly(vinyl alcohol-co-ethylene), where AQBZ is obtained by Mannich reaction and Menshutkin reaction. All four proportions of semi-IPNs exhibit clear micro-phase separation, which is conducive to ion transport. The water uptake (WU) of the four semi-IPNs ranges from 14.2 % to 19.2 %, while the swelling ratio (SR) remains between 8.7 % and 11.3 %. These results indicate that the cross-linked structure in the designed semi-IPNs effectively control swelling and ensure dimensional stability. The thermal degradation temperature (Td5) of semi-IPN4:6 to semi-IPN7:3 varies from 309 °C to 289 °C, with an oxidation stability weight loss rate (WOX) ranging from 91.5 % to 93.5 %, demonstrating excellent thermal stability and oxidation stability. The semi-IPNs also show good UH + values ranging from 11.9-16.3*10-3 m/h and high S values between 38.6 and 45.9, indicating the promising potential of the semi-IPNs.
Collapse
Affiliation(s)
- Longyu Tian
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Min Wang
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Guangming Liao
- Dongying Hualian Petrochemical Co.Ltd., Dongying, P. R. China
| | - Baoliang Liu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yucheng Sun
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Yukun Hu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Zaijun Lu
- Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| |
Collapse
|
3
|
Golubenko D, Ahmed FE, Hilal N. Novel Crosslinked Anion Exchange Membranes Based on Thermally Cured Epoxy Resin: Synthesis, Structure and Mechanical and Ion Transport Properties. MEMBRANES 2024; 14:138. [PMID: 38921505 PMCID: PMC11205850 DOI: 10.3390/membranes14060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Limitations in existing anion exchange membranes deter their use in the efficient treatment of industrial wastewater effluent. This work presents an approach to fabricating novel anion-conducting membranes using epoxy resin monomers like hydrophobic or hydrophilic diglycidyl ether and quaternized polyethyleneimine (PEI). Manipulating the diglycidyl ether nature, the quantitative composition of the copolymer and the conditions of quaternization allows control of the physicochemical properties of the membranes, including water uptake (20.0-330%), ion exchange capacity (1.5-3.7 mmol/g), ionic conductivity (0.2-17 mS/cm in the Cl form at 20 °C), potentiostatic transport numbers (75-97%), as well as mechanical properties. A relationship was established between copolymer structure and conductivity/selectivity trade-off. The higher the quaternized polyethyleneimine, diluent fraction, and hydrophilicity of diglycidyl ether, the higher the conductivity and the lower the permselectivity. Hydrophobic diglycidyl ether gives a much better conductivity/selectivity ratio since it provides a lower degree of hydration than hydrophilic diglycidyl ether. Different mesh and non-woven reinforcing materials were also examined. The developed membranes demonstrate good stability in both neutral and acidic environments, and their benchmark characteristics in laboratory electrodialysis cells and batch-mode dialysis experiments are similar to or superior to, commercial membranes such as Neosepta© AMX, FujiFilm© Type1, and Fumasep FAD-PET.
Collapse
Affiliation(s)
| | | | - Nidal Hilal
- New York University Abu Dhabi Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.G.); (F.E.A.)
| |
Collapse
|
4
|
Perveen S, Hussain SG, Ahmed MJ, Khawar R, Siraj TB, Saleem M. A Viable and sustainable flat- membrane plate-and-frame module for spent acid regeneration and metal ion recovery. Heliyon 2023; 9:e18344. [PMID: 37520977 PMCID: PMC10382638 DOI: 10.1016/j.heliyon.2023.e18344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
This study provides techno-economical insights for acid regeneration and metal recovery from spent acidic wastewater by a diffusion dialysis plate-and-frame module using Quaternized Polyepichlorohydrin - Polyacrylonitrile (QPECH-PAN) membranes. Quaternized Polyepichlorohydrin (QPECH) membranes were synthesized using 1,4-diazobicyclo[2.2.2]octane (DABCO) and blended with polyacrylonitrile (PAN). Said membranes were analyzed in terms of their mechanical, physicochemical, and electrochemical characteristics, providing significant results comparable to the commercial membranes (IEC: 1.76 mmol/g, SD: 60.91%, Permselectivity: 79.5 ± 0.31%, and transport no. t(-): 0.5). Mechanical characterization reveals that the QPECH-PAN membranes possess comparable mechanical strengths (tensile strength: 329.56 MPa). Further, sheet resistivity (6.11 Ω cm2) and conductivity (0.16 S/cm2) reveal the relative conductive nature of these membranes. Percent acid recovery and metal ion recovery ratios were found to be 72% and 48% respectively, and separation factors were 126.8 and 84.57 respectively. The QPECH-PAN membrane's techno-economic feasibility was also analyzed within the context of a textile industry processing up to 5500 kg/d of acidic wastewater. It indicates a potential cost saving of US $0.53 million on H2SO4 and NaOH, as well as an OPEX saving of 40.91% against a semi-continuous acid neutralizer.
Collapse
Affiliation(s)
- Shazia Perveen
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| | - Syed Ghazanfar Hussain
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| | - Muzamil Jalil Ahmed
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| | - Ruba Khawar
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| | - Taha Bin Siraj
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| | - Maryam Saleem
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi 75270, Sindh, Pakistan
| |
Collapse
|
5
|
Bergamini V, Resca E, Portone A, Petrachi T, Ganzerli F, Truzzi S, Mari G, Rovati L, Dominici M, Veronesi E. Label-Free Optical Sensing and Medical Grade Resins: An Advanced Approach to Investigate Cell-Material Interaction and Biocompatibility. Pharmaceutics 2023; 15:2043. [PMID: 37631257 PMCID: PMC10459080 DOI: 10.3390/pharmaceutics15082043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The Corning Epic® label-free (ELF) system is an innovative technology widely used in drug discovery, immunotherapy, G-protein-associated studies, and biocompatibility tests. Here, we challenge the use of ELF to further investigate the biocompatibility of resins used in manufacturing of blood filters, a category of medical devices representing life-saving therapies for the increasing number of patients with kidney failure. The biocompatibility assays were carried out by developing a cell model aimed at mimicking the clinical use of the blood filters and complementing the existing cytotoxicity assay requested by ISO10993-5. Experiments were performed by putting fibroblasts in both direct contact with two types of selected resins, and indirect contact by means of homemade customized well inserts that were precisely designed and developed for this technology. For both types of contact, fibroblasts were cultured in medium and human plasma. ELF tests confirmed the biocompatibility of both resins, highlighting a statistically significant different biological behavior of a polyaromatic resin compared to control and ion-exchanged resin, when materials were in indirect contact and soaking with plasma. Overall, the ELF test is able to mimic clinical scenarios and represents a promising approach to investigate biocompatibility, showing peculiar biological behaviors and suggesting the activation of specific intracellular pathways.
Collapse
Affiliation(s)
- Valentina Bergamini
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Elisa Resca
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Alberto Portone
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Tiziana Petrachi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Francesco Ganzerli
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Stefano Truzzi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Giorgio Mari
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| | - Luigi Rovati
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli, 10, 41125 Modena, Italy
| | - Massimo Dominici
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Hospital of Modena, Via del Pozzo, 71, 41125 Modena, Italy
| | - Elena Veronesi
- Technopole “Mario Veronesi”, Via 29 Maggio, 41037 Mirandola, Italy; (E.R.); (A.P.); (T.P.); (F.G.); (S.T.); (G.M.); (L.R.); (M.D.)
| |
Collapse
|
6
|
Ho CD, Tu JW, Chen YH, Chew TL. Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations. MEMBRANES 2023; 13:702. [PMID: 37623763 PMCID: PMC10456604 DOI: 10.3390/membranes13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
This research theoretically and experimentally develops a hollow-fiber dialysis module coupled with ultrafiltration operations by introducing a trans-membrane pressure during the membrane dialysis process, which can be applied to the waste metabolic end products in the human body for improving the dialysis efficiency. The solutes were transported by both diffusion and convection from the concentration driving-force gradient between retentate and dialysate phases across the membrane, compared to the traditional dialysis processes by diffusion only. A two-dimensional modeling of such a dialysis-and-ultrafiltration system in the hollow-fiber dialysis module was formulated and solved using the stream function coupled with the perturbation method to obtain the velocity distributions of retentate and dialysate phases, respectively. The purpose of the present work is to investigate the effect of ultrafiltration on the dialysis rate in the hollow-fiber dialyzer with ultrafiltration operations. A highest level of dialysis rate improvement up to about seven times (say 674.65% under Va=20 mL/min) was found in the module with ultrafiltration rate Vw=10 mL/min and membrane sieving coefficient θ=1, compared to that in the system without operating ultrafiltration. Considerable dialysis rate improvements on mass transfer were obtained by implementing a hollow-fiber dialysis-and-ultrafiltration system, instead of using the hollow-fiber dialyzer without ultrafiltration operation. The experimental runs were carried out under the same operating conditions for the hollow-fiber dialyzers of the two experimental runs with and without ultrafiltration operations for comparisons. A very reasonable prediction by the proposed mathematical model was observed.
Collapse
Affiliation(s)
- Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan (Y.-H.C.)
| | - Jr-Wei Tu
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan (Y.-H.C.)
| | - Yih-Hang Chen
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan (Y.-H.C.)
| | - Thiam Leng Chew
- Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia;
- CO2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
7
|
Ho CD, Tu JW, Lim JW, Lai WC. Device Performance of a Tubular Membrane Dialyzer Incorporating Ultrafiltration Effects on the Dialysis Efficiency. MEMBRANES 2023; 13:556. [PMID: 37367760 DOI: 10.3390/membranes13060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Membrane dialysis is one of the membrane contactors applied to wastewater treatment. The dialysis rate of a traditional dialyzer module is restricted because the solutes transport through the membrane only by diffusion, in which the mass-transfer driving force across the membrane is the concentration gradient between the retentate and dialysate phases. A two-dimensional mathematical model of the concentric tubular dialysis-and-ultrafiltration module was developed theoretically in this study. The simulated results show that the dialysis rate improvement was significantly improved through implementing the ultrafiltration effect by introducing a trans-membrane pressure during the membrane dialysis process. The velocity profiles of the retentate and dialysate phases in the dialysis-and-ultrafiltration system were derived and expressed in terms of the stream function, which was solved numerically by the Crank-Nicolson method. A maximum dialysis rate improvement of up to twice that of the pure dialysis system (Vw=0) was obtained by employing a dialysis system with an ultrafiltration rate of Vw=2 mL/min and a constant membrane sieving coefficient of θ=1. The influences of the concentric tubular radius, ultrafiltration fluxes and membrane sieve factor on the outlet retentate concentration and mass transfer rate are also illustrated.
Collapse
Affiliation(s)
- Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan
| | - Jr-Wei Tu
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Wei-Chi Lai
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei 251301, Taiwan
| |
Collapse
|
8
|
Lin J, Dan X, Wang J, Huang S, Fan L, Xie M, Zhao S, Lin X. In-situ cross-linked porous anion exchange membranes with high performance for efficient acid recovery. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Investigation on flexible and thermally crosslinked bis-piperidinium-PPO anion exchange membrane (AEM) for electro-kinetic desalination and acid recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zhang S, Li Y, Li X, Gu J, Shao H, Huang Q, Cui P, Liu Y, Ran J, Fu CF. Polycations inclusion to simultaneously boost permeation and selectivity of two-dimensional TaS2 membranes for acid recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Nagarale R, Bavdane PP, Sreenath S, Pawar CM, Dave V, Satpati AK. Polyaniline derivatized anion exchange membrane for acid recovery. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Li X, Afsar NU, Chen X, Wu Y, Chen Y, Shao F, Song J, Yao S, Xia R, Qian J, Wu B, Miao J. Negatively Charged MOF-Based Composite Anion Exchange Membrane with High Cation Selectivity and Permeability. MEMBRANES 2022; 12:membranes12060601. [PMID: 35736308 PMCID: PMC9227639 DOI: 10.3390/membranes12060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022]
Abstract
Every metal and metallurgical industry is associated with the generation of wastewater, influencing the living and non-living environment, which is alarming to environmentalists. The strict regulations about the dismissal of acid and metal into the environment and the increasing emphasis on the recycling/reuse of these effluents after proper remedy have focused the research community's curiosity in developing distinctive approaches for the recovery of acid and metals from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH)2 using dual ligand in water as a green solvent. Then, the prepared MOF nanoparticles were introduced into the DMAM quaternized QPPO matrix through a straightforward blending approach. Four defect-free UiO-66-(COOH)2/QPPO MMMs were prepared with four different MOF structures. The BET characterization of UiO-66-(COOH)2 nanoparticles with a highly crystalline structure and sub-nanometer pore size (~7 Å) was confirmed by XRD. Because of the introduction of MOF nanoparticles with an electrostatic interaction and pore size screening effect, a separation coefficient (SHCl/FeCl2) of 565 and UHCl of 0.0089 m·h-1 for U-C(60)/QPPO were perceived when the loading dosage of the MOF content was 10 wt%. The obtained results showed that the prepared defect-free MOF membrane has broad prospects in acid recovery applications.
Collapse
Affiliation(s)
- Xiaohuan Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China;
| | - Xiaopeng Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yifeng Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yu Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Feng Shao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiaxian Song
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Shuai Yao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| |
Collapse
|
13
|
Xiong Z, Huang Y, Huang Z, Shi Y, Qu F, Zhang G, Yang J, Zhao S. Confining Nano-Fe 3O 4 in the Superhydrophilic Membrane Skin Layer to Minimize Internal Fouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26044-26056. [PMID: 35609300 DOI: 10.1021/acsami.2c04685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane surface fouling is often reversible as it can be mitigated by enhancing the crossflow shear force. However, membrane internal fouling is often irreversible and thus more challenging. In this study, we developed a new superhydrophilic poly(vinylidene fluoride) (P-PVDF) membrane confined with nano-Fe3O4 in the top skin layer via reverse filtration to reduce internal fouling. The surface of the P-PVDF membrane confined with nano-Fe3O4 had superwetting properties (water contact angle reaching 0° within 1 s), increased roughness (from 182 to 239 nm), and enhanced water affinity. The Fe3O4@P-PVDF membrane surface showed a thicker and enhanced hydration layer, which prevented foulants from approaching membrane surfaces and pores, thereby improving the rejection. For example, when 50 ppm humic acid (HA) solution was used as the feed, the removal efficiency of the Fe3O4@P-PVDF membrane was ∼67%, while the HA removal of the P-PVDF membrane was only ∼20%. The results from the resistance-in-series model showed that nanoconfinement of Fe3O4 in the top skin layer of the membrane allowed foulants to accumulate on the membrane surface (i.e., surface fouling) rather than within the internal pores (i.e., internal fouling). The filtration results under crossflow fouling and cleaning confirmed that the Fe3O4@P-PVDF membrane had higher surface fouling but it was much more reversible and much lower internal fouling compared with the control membrane. Our fouling analysis offers new insights into mass transfer mechanisms of the membrane with a nanoconfinement-enhanced hydration layer. This study provides an effective strategy to develop membranes with low internal fouling propensities.
Collapse
Affiliation(s)
- Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Yongshi Huang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zehui Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Yiwen Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Gaosheng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Jingxin Yang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuaifei Zhao
- Geelong, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
14
|
Pawar CM, Sreenath S, Dave V, Bavdane PP, Singh V, Verma V, Nagarale RK. Chemically stable and high acid recovery anion exchange membrane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Merkel A, Čopák L, Golubenko D, Dvořák L, Vavro M, Yaroslavtsev A, Šeda L. Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module. Int J Mol Sci 2022; 23:ijms23116212. [PMID: 35682891 PMCID: PMC9181085 DOI: 10.3390/ijms23116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
In the present study, the possibility of using a spiral-wound diffusion dialysis module was studied for the separation of hydrochloric acid and Zn2+, Ni2+, Cr3+, and Fe2+ salts. Diffusion dialysis recovered 68% of free HCl from the spent pickling solution contaminated with heavy-metal-ion salts. A higher volumetric flowrate of the stripping medium recovered a more significant portion of free acid, namely, 77%. Transition metals (Fe, Ni, Cr) apart from Zn were rejected by >85%. Low retention of Zn (35%) relates to the diffusion of negatively charged chloro complexes through the anion-exchange membrane. The mechanical and transport properties of dialysis FAD-PET membrane under accelerated degradation conditions was investigated. Long-term tests coupled with the economic study have verified that diffusion dialysis is a suitable method for the treatment of spent acids, the salts of which are well soluble in water. Calculations predict significant annual OPEX savings, approximately up to 58%, favouring diffusion dialysis for implementation into wastewater management.
Collapse
Affiliation(s)
- Arthur Merkel
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Ladislav Čopák
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Daniil Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Matej Vavro
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia; (D.G.); (A.Y.)
| | - Libor Šeda
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic; (M.V.); (L.Š.)
| |
Collapse
|
16
|
Modified Polyethersulfone Ultrafiltration Membrane for Enhanced Antifouling Capacity and Dye Catalytic Degradation Efficiency. SEPARATIONS 2022. [DOI: 10.3390/separations9040092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Catalytic membranes, as a combination of heterogeneous advanced oxidation and membrane technology reaction systems, have important application prospects in the treatment of dyes and other organics. In practical applications, it is still challenging to construct catalytic membranes with excellent removal efficiency and fouling mitigation. Herein, molybdenum disulfide-iron oxyhydroxide (MoS2-FeOOH) was fabricated using iron oxide and MoS2 nanoflakes, which were synthesized by the hydrothermal method. Furthermore, by changing the concentration of MoS2-FeOOH, the MoS2-FeOOH/polyethersulfone (PES) composite ultrafiltration membrane was obtained with improved hydrophilicity, permeability, and antifouling capacity. The pure water flux of the composite membrane reached 385.3 L/(m2 h), which was 1.7 times that of the blank PES membrane. Compared with the blank membrane, with the increase of MoS2-FeOOH content, the MoS2-FeOOH/PES composite membranes had better adsorption capacity and catalytic performance, and the membrane with 3.0% MoS2-FeOOH content (M4) could be achieved at a 60.2% methylene blue (MB) degradation rate. In addition, the membrane flux recovery ratio (FRR) of the composite membrane also increased from 25.6% of blank PES membrane (M0) to more than 70% after two cycles of bovine serum albumin (BSA) filtration and hydraulic cleaning. The membrane with 2.25% MoS2-FeOOH content (M3) had the best antifouling performance, with the largest FRR and the smallest irreversible ratio (Rir). Catalytic self-cleaning of the composite membrane M3 recovered 95% of the initial flux with 0.1 mol/L H2O2 cleaning. The MoS2-FeOOH/PES composite membranes with the functions of excellent rejection and antifouling capacity have a good prospect in the treatment of printing and dyeing wastewater composed of soluble dyes.
Collapse
|
17
|
Synthesis of Porous BPPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis. MEMBRANES 2022; 12:membranes12010095. [PMID: 35054621 PMCID: PMC8778702 DOI: 10.3390/membranes12010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/05/2023]
Abstract
Diffusion dialysis (DD) is an anion exchange membrane-based functional separation process used for acid recovery. TMA (trimethylamine) and BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide) were utilized in this manuscript to formulate AEMs (anion exchange membranes) for DD (diffusion dialysis) using the phase-inversion technique. FTIR (Fourier transfer infrared) analysis, proton NMR spectroscopy, morphology, IEC (ion exchange capacity), LER (linear expansion ratio), CR (fixed group concentration), WR (water uptake/adsorption), water contact angle, chemical, and thermal stability, were all used to evaluate the prepared membranes. The effect of TMA content within the membrane matrix on acid recovery was also briefly discussed. It was reported that porous AEMs have a WR of 149.6% to 233.8%, IEC (ion exchange capacity) of 0.71 to 1.43 mmol/g, CR (fixed group concentration) that ranged from 0.0046 mol/L to 0.0056 mol/L, LER of 3.88% to 9.23%, and a water contact angle of 33.10° to 78.58°. The UH (acid dialysis coefficients) for designed porous membranes were found to be 0.0043 to 0.012 m/h, with separation factors (S) ranging from 13.14 to 32.87 at the temperature of 25 °C. These observations are comparable to those found in the DF-120B commercial membrane with UH of 0.004 m/h and S of 24.3 m/h at the same temperature (25 °C). This porous membranes proposed in this paper are excellent choices for acid recovery through the diffusion dialysis process.
Collapse
|
18
|
Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Song W, He Y, Shehzad MA, Ge X, Ge L, Liang X, Wei C, Ge Z, Zhang K, Li G, Yu W, Wu L, Xu T. Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
21
|
Merkel A, Čopák L, Dvořák L, Golubenko D, Šeda L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int J Mol Sci 2021; 22:ijms222111819. [PMID: 34769251 PMCID: PMC8584272 DOI: 10.3390/ijms222111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we assess the effects of volumetric flow and feed temperature on the performance of a spiral-wound module for the recovery of free acid using diffusion dialysis. Performance was evaluated using a set of equations based on mass balance under steady-state conditions that describe the free acid yield, rejection factors of metal ions and stream purity, along with chemical analysis of the outlet streams. The results indicated that an increase in the volumetric flow rate of water increased free acid yield from 88% to 93%, but decreased Cu2+ and Fe2+ ion rejection from 95% to 90% and 91% to 86%, respectively. Increasing feed temperature up to 40 °C resulted in an increase in acid flux of 9%, and a reduction in Cu2+ and Fe2+ ion rejection by 2–3%. Following diffusion dialysis, the only evidence of membrane degradation was a slight drop in permselectivity and an increase in diffusion acid and salt permeability. Results obtained from the laboratory tests used in a basic economic study showed that the payback time of the membrane-based regeneration unit is approximately one year.
Collapse
Affiliation(s)
- Arthur Merkel
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Ladislav Čopák
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
- Correspondence: (A.M.); (L.Č.); Tel.: +420-777-539-924 (A.M.); +420-720-051-738 (L.Č.)
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic;
| | - Daniil Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Avenue, 119991 Moscow, Russia;
| | - Libor Šeda
- MemBrain s. r. o. (Membrane Innovation Centre), Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic;
| |
Collapse
|