1
|
Zhou X, Yang W, Lin H, Wang B, Xie M, Fang H, Zhang H, Zhang M, Teng J. Membrane fouling mechanisms in the presence of microplastics and organic matter: The unexpected mitigating role of Ca 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176446. [PMID: 39307365 DOI: 10.1016/j.scitotenv.2024.176446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Ultrafiltration (UF) is demonstrated to be highly effective in the removal of microplastics (MPs), but the presence of coexisting foulants introduces significant uncertainties into the associated membrane fouling behaviors. In this study, membrane fouling mechanisms were investigated when MPs, represented by polystyrene (PS), coexisted with typical organic foulants (sodium alginate, SA) and inorganic ions (Ca2+). Fouling tests revealed that the order of Ca2+ addition significantly impacted the fouling behavior of the SA-PS combined foulants. Specifically, the specific filtration resistance (SFR) was reduced by 40.82 % in the SA-PS-Ca2+ foulants and by 90.92 % in the SA-Ca2+-PS foulants, compared to the SA-PS foulants. X-ray photoelectron spectroscopy and density functional theory calculations indicated that sufficient cross-linking of Ca2+ with SA molecular chains in the SA-Ca2+-PS foulants, forming a large-scale 3D network that encapsulated more PS particles and resulted in larger flocs than those found in the SA-PS-Ca2+ foulants. According to extended Flory-Huggins theory, the improved filtration performance of the SA-PS combined foulants was due to substantial changes in chemical potential during their transition from gel to flocs upon Ca2+ addition. Furthermore, interfacial thermodynamic analyses suggested that increased repulsion between SA-Ca2+-PS foulants and between them and the membrane led to a looser fouling layer, significantly mitigating membrane fouling. This study elucidates the fouling mechanisms in the presence of MPs and other foulants from the perspectives of energy changes and molecular structures, providing novel insights for developing strategies to mitigate membrane fouling.
Collapse
Affiliation(s)
- Xiaoni Zhou
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wenfa Yang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Biyan Wang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingjing Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hao Fang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Meijia Zhang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Yan B, Blankert B, Vogt SJ, Vrouwenvelder JS, Johns ML, Fridjonsson EO. Monitoring residual fouling after cleaning of multi-fiber membrane modules fiber-by-fiber using non-invasive MRI monitoring. WATER RESEARCH 2023; 229:119384. [PMID: 36442271 DOI: 10.1016/j.watres.2022.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study non-invasive low field magnetic resonance imaging (MRI) technology was used to monitor fouling induced changes in fiber-by-fiber hydrodynamics inside a multi-fiber hollow fiber membrane module containing 401 fibers. Using structural and velocity images the fouling evolution of these membrane modules were shown to exhibit distinct trends in fiber-by-fiber volumetric flow, with increasing fouling causing a decrease in the number of flow active fibers. This study shows that the fouling rate is not evenly distributed over the parallel fibers, which results in a broadening of the fiber to fiber flowrate distribution. During cleaning, this distribution is initially broadened further, as relatively clean fibers are cleaned more rapidly compared to clogged fibers. By tracking the volumetric flow rate of individual fibers inside the modules during the fouling-cleaning cycle it was possible to observe a fouling memory-like effect with residual fouling occurring preferentially at the outer edge of the fiber bundle during repeated fouling-cleaning cycle. These results demonstrate the ability of MRI velocity imaging to quantitatively monitor these effects which are important when testing the effectiveness of cleaning protocols due to the long term effect that residual fouling and memory-like effect may have on the operation of membrane modules.
Collapse
Affiliation(s)
- Bin Yan
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bastiaan Blankert
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sarah J Vogt
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Johannes S Vrouwenvelder
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Michael L Johns
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
| | - Einar O Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
4
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Gottschalk N, Augustin W, Scholl S, Ian Wilson D, Mercadé-Prieto R. Model food soils for investigating cleaning: a review. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
A review on hollow fiber membrane module towards high separation efficiency: Process modeling in fouling perspective. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|