1
|
Peng X, Chen L, You L, Jin Y, Zhang C, Ren S, Kapteijn F, Wang X, Gu X. Improved Synthesis of Hollow Fiber SSZ-13 Zeolite Membranes for High-Pressure CO 2/CH 4 Separation. Angew Chem Int Ed Engl 2024; 63:e202405969. [PMID: 38760324 DOI: 10.1002/anie.202405969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 μm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.
Collapse
Affiliation(s)
- Xingyu Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Lingjie Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Lekai You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yang Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Chun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Shengyuan Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The, Netherlands
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Quzhou Membrane Material Innovation Institute, No. 99 Zheda Road, Quzhou, 324000, P. R. China
| |
Collapse
|
2
|
Huang W, He Z, Liu B, Wang Q, Zhong S, Zhou R, Xing W. Large surface-to-volume-ratio and ultrahigh selectivity SSZ-13 membranes on 61-channel monoliths for efficient separation of CO2/CH4 mixture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Rigid-interface-locking of ZIF-8 membranes to enable for superior high-pressure propylene/propane separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Ma B, Zhu Y, Hong H, Cui L, Gao H, Zhao D, Wang B, Zhou R, Xing W. Improved silicalite-1 membranes on 61-channel monolithic supports for n-butane/i-butane separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
|
6
|
Li X, Yu K, He Z, Liu B, Zhou R, Xing W. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wu J, Wu H, Wang B, Zhou R, Xing W. One-Step Scalable Fabrication of Highly Selective Monolithic Zeolite MFI Membranes for Efficient Butane Isomer Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21198-21206. [PMID: 35475613 DOI: 10.1021/acsami.2c02456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reproducible fabrication of large-area zeolite membranes for gas separation is still a great challenge. We report the scalable fabrication of high-performance zeolite MFI membranes by single-step secondary growth on the 19-channel alumina monoliths for the first time. The packing density and mechanical strength of the monolithic membranes are much higher for these than for tubular ones. Separation performance of the monolithic membranes toward the butane isomer mixture was comparably evaluated using the vacuum and Wicke-Kallenbach modes. The n-butane permeances and n-butane/i-butane separation factors for the three membranes with an effective area of ∼84 cm2 were >1.0 × 10-7 mol (m2 s Pa)-1 and >50 at 343 K for an equimolar n-butane/i-butane mixture, respectively. We succeeded in scaling up the membrane synthesis with the largest area of 270 cm2 to date which has 1.3 times the area of an industrial 1 m long tubular membrane. Monolith supported zeolite MFI membranes show great potential for industrial n-butane/i-butane separation.
Collapse
Affiliation(s)
- Jiyang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Haolin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
9
|
Kim D, Ghosh S, Akter N, Kraetz A, Duan X, Gwak G, Rangnekar N, Johnson JR, Narasimharao K, Malik MA, Al-Thabaiti S, McCool B, Boscoboinik JA, Mkhoyan KA, Tsapatsis M. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication. SCIENCE ADVANCES 2022; 8:eabm8162. [PMID: 35385314 PMCID: PMC8986103 DOI: 10.1126/sciadv.abm8162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Zeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.e., without using exfoliation, etching, or other top-down processing) of thin, flat MFI nanosheets and demonstrate their use as high-performance membranes for xylene isomer separations. Our MFI nanosheets were synthesized using nanosheet fragments as seeds instead of the previously used MFI nanoparticles. The obtained MFI nanosheets exhibit improved thickness uniformity and are free of rotational and MEL intergrowths as shown by transmission electron microscopy (TEM) imaging. The nanosheets can form well-packed nanosheet coatings. Upon gel-free secondary growth, the obtained zeolite MFI membranes show high separation performance for xylene isomers at elevated temperature (e.g., p-xylene flux up to 1.5 × 10-3 mol m-2 s-1 and p-/o-xylene separation factor of ~600 at 250°C).
Collapse
Affiliation(s)
- Donghun Kim
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nusnin Akter
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrea Kraetz
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xuekui Duan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeongseok Gwak
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Neel Rangnekar
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - J. R. Johnson
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - Katabathini Narasimharao
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaeel Al-Thabaiti
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Benjamin McCool
- Separations and Process Chemistry, Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ 08801, USA
| | - J. Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - K. Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA
| |
Collapse
|
10
|
Industrial-scale fabrication of mordenite membranes by dual heating method for production of ethyl acetate in an industrial VP-esterification plant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Small-Pore Zeolite Membranes: A Review of Gas Separation Applications and Membrane Preparation. SEPARATIONS 2022. [DOI: 10.3390/separations9020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There have been significant advancements in small-pore zeolite membranes in recent years. With pore size closely related to many energy- or environment-related gas molecules, small-pore zeolite membranes have demonstrated great potential for the separation of some interested gas pairs, such as CO2/CH4, CO2/N2 and N2/CH4. Small-pore zeolite membranes share some characteristics but also have distinctive differences depending on their framework, structure and zeolite chemistry. Through this mini review, the separation performance of different types of zeolite membranes with respect to interested gas pairs will be compared. We aim to give readers an idea of membrane separation status. A few representative synthesis conditions are arbitrarily chosen and summarized, along with the corresponding separation performance. This review can be used as a quick reference with respect to the influence of synthesis conditions on membrane quality. At the end, some general findings and perspectives will be discussed.
Collapse
|
12
|
|