1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Wang Y, Wang S, Sui Z, Gu Y, Zhang Y, Gao J, Lei Y, Zhao J, Li N, Wu J, Wang Z. "Fishbone" Design of Amino/N-Spirocyclic Cations toward High-Performance Poly(triphenylene piperidine) Anion-Exchange Membranes for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4003-4012. [PMID: 38207002 DOI: 10.1021/acsami.3c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Song Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhiyan Sui
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiman Gu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanchao Zhang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Jian Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yijia Lei
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jialin Zhao
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Na Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - JingYi Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhe Wang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
| |
Collapse
|
3
|
Semi-interpenetrating anion exchange membranes using hydrophobic microporous linear poly(ether ketone). J Colloid Interface Sci 2023; 634:110-120. [PMID: 36535151 DOI: 10.1016/j.jcis.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisindane-based intrinsically microporous poly(ether ketone) (PEK-SBI). The formation of phase separated structures as a result of the incompatibility between the hydrophilic PBP network and the hydrophobic PEK-SBI segment, has successfully promoted the hydroxide ion conductivity of AEMs. A swelling ratio (SR) as low as 12.2 % at 80 °C was recorded for the sIPN containing hydrophobic PEK-SBI as the linear polymer and crosslinked structure with a mass ratio of PBP to PEK-SBI of 90/10 (sIPN-90/10(PEK-SBI)). The sIPN-90/10(PEK-SBI) AEM achieved the highest hydroxide ion conductivity of 122.4 mS cm-1 at 80 °C and a recorded ion exchange capacity (IEC) of 2.26 meq g-1. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) clearly revealed the improved phase separation structure of sIPN-90/10(PEK-SBI). N2 adsorption isotherm indicated that the Brunauer-Emmett-Teller (BET) surface area of the AEMs increased with the increase of microporous PEK-SBI content. Interestingly, the sIPN-90/10(PEK-SBI) AEM showed good alkaline stability for being able to maintain a conductivity of 94.7 % despite being soaked in a 1 M sodium hydroxide solution at 80 °C for 30 days. Meanwhile, a peak power density of 481 mW cm-2 can be achieved by the hydrogen/oxygen single cell using sIPN-90/10(PEK-SBI) as the AEM.
Collapse
|
4
|
Zhao Y, Lv B, Song W, Hao J, Zhang J, Shao Z. Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Wang X, Qiao X, Liu S, Liu L, Li N. Poly(terphenyl piperidinium) containing hydrophilic crown ether units in main chains as anion exchange membranes for alkaline fuel cells and water electrolysers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Liang M, Peng J, Cao K, Shan C, Liu Z, Wang P, Hu W, Liu B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang G, Li R, Wang X, Chen X, Shen Y, Fu Y. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wei X, Wu J, Jiang H, Zhao X, Zhu Y. Improving the conductivity and dimensional stability of anion exchange membranes by grafting of quaternized dendrons. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangtai Wei
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Jianrong Wu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Hao Jiang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou P. R. China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| |
Collapse
|
10
|
Kim M, Ko H, Nam SY, Kim K. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Polymers (Basel) 2021; 13:3520. [PMID: 34685282 PMCID: PMC8539910 DOI: 10.3390/polym13203520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.
Collapse
Affiliation(s)
| | | | | | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (H.K.); (S.Y.N.)
| |
Collapse
|