1
|
Song W, Ma J, Miao S, Zhao Q, Chu H, Zhou X, Zhang Y. Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights. WATER RESEARCH 2025; 273:123079. [PMID: 39756225 DOI: 10.1016/j.watres.2024.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS. The fouling process resulting from algal cell particle deposition and cake layer formation are clearly simulated using a semi-coupled computational method of Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) for the first time. The results reveal that the hydrophilic component and spatial network structure of soluble EPS (S-EPS) effectively impede the algae-membrane adhesion, and enable the algal cake layer exhibit "dynamic membrane" characteristic to enhance the organic matter retention. In contrast, bound EPS (B-EPS) with higher protein content exhibits a stronger fouling potential and adhesion tendency of algal cells. The influence of stratified EPS on the variation of thermodynamic interaction with contact scale in the sphere-plane/sphere-sphere model is inventively conducted. Based on different algal cell filtration modes, a sequential increase in the eigenvalue n was observed by delaminating EPS layer by layer, indicative of a more severe membrane pore blockage. The semi-coupled CFD-DEM method provides a quantitative analysis of the deposition process, offering spatial resolution and force analysis for algal-derived pollutants. Additionally, we propose a novel calculation method to reverse the deposition process based on the particle stress, providing a valuable reference for simulating membrane-based microalgae harvesting under the influence of stratified EPS.
Collapse
Affiliation(s)
- Wenxin Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiaying Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shiyong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qipeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
2
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
3
|
Sinahroy A, Kim SH, Chung CM. Predicting membrane fouling in membrane bioreactor systems using viscosity: Impacts of environmental conditions and antifouling agents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122868. [PMID: 39418706 DOI: 10.1016/j.jenvman.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This study attempted to establish a viscosity-based prediction of membrane fouling. Various factors, including pH, temperature, MLSS concentration, and the addition of NaOCl and citric acid were identified, and their effect on sludge properties such as EPS concentration and wastewater viscosity were estimated. There was a very good correlation between these parameters with EPS concentration and viscosity. The increase in EPS concentration and viscosity significantly affected the membrane flux and filtration time for all the different experimental conditions. However, there were fluctuations in results obtained from experiments related to change in pH, including the addition of antifouling agents NaOCl and citric acid. Such variations accompanied by low correlation in these experiments indicated the influence of pH that may pose difficulty in a viscosity-based estimation of membrane fouling. However, if such large variations in operating conditions could be avoided and the reactor could be operated under optimal conditions, a much better correlation could be obtained between viscosity and membrane fouling. Data from continuously operated MBR systems support this observation, where even a linear equation defining relation between viscosity and transmembrane pressure (TMP) could be obtained. Overall, findings from this study provide a great insight into membrane fouling prediction using viscosity-based methods.
Collapse
Affiliation(s)
- Arindam Sinahroy
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Seung Hui Kim
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea
| | - Chong Min Chung
- Department of Environmental Science & Biotechnology, Jeonju University, Jeonju, 55069, Republic of Korea.
| |
Collapse
|
4
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Roberge H, Moreau P, Couallier E, Abellan P. Lipids and Proteins Differentiation in Membrane Fouling Using Heavy Metal Staining and Electron Microscopy at Cryogenic Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2090-2098. [PMID: 37966971 DOI: 10.1093/micmic/ozad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled. In this study, we present the development of a heavy metal staining technique for identification and differentiation of biomolecules in membrane fouling, which is compatible with cryofixation methods. A general contrast enhancement of biomolecules and fouling is achieved. Our observations indicate a strong interaction between biomolecules: A tendency of proteins, both in solution as well as in the fouling, to surround the lipids is observed. Using transmission electron microscopy and scanning electron microscopy at cryogenic conditions, cryo-SEM, in combination with energy-dispersive X-ray spectroscopy, the spatial distribution of proteins and lipids within fouling is shown and the role of proteins in fouling discussed.
Collapse
Affiliation(s)
- Hélène Roberge
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| | - Estelle Couallier
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| |
Collapse
|
6
|
Xu B, Lu X, Fu Y, Diao L, Liang H, Bae S, Ng HY, Ma J. Novel use of ferrous iron/peroxymonosulfate for high-performance seawater desalination pretreatment under harmful algal blooms. WATER RESEARCH 2023; 247:120758. [PMID: 37918194 DOI: 10.1016/j.watres.2023.120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Marine harmful algae bloom (HAB) is a growing threat to desalination plants worldwide. This work proposes ferrous iron/peroxymonosulfate (Fe2+/PMS) as a novel pretreatment technology for seawater reverse osmosis (SWRO) under HAB. Herein, Fe2+/PMS achieved a significantly higher reduction of negative charge of algae-laden seawater as compared to conventional coagulation (i.e., coagulant is Fe3+), which thereby facilitated improved flocculation to remove algal cells, turbidity and algal organics matters (AOMs), and marine Ca2+ (∼430 mg/L) could partially contribute to the enhanced coagulation performance. A new understanding of the improved coagulation efficiency achieved with Fe2+/PMS in seawater has been proposed as compared to freshwater: seawater matrix (e.g., 504 mM Cl-) was demonstrated to significantly enhance the generation of high-valent iron (FeO2+) as the main reactive intermediate instead of the long-recognized Fe3+ and free radicals, as revealed by methyl phenyl sulfoxide (PMSO) probe, radicals scavenging analysis and electron spin resonance (ESR) spectra. This new mechanism is expected to provide valuable insights for the development of more novel oxidative seawater treatment technologies. Of note, while trade-off between particles and AOMs played an important role in membrane fouling reduction by different dosages of Fe2+/PMS, Fe2+/PMS with an optimal dosage of 0.1 mM/0.05 mM achieved an unprecedentedly higher reduction (95.26%) of modified fouling index (MFI) as compared to conventional coagulation (13.28%-42.36% with 0.1-0.2 mM of Fe3+). Optical-photothermal infrared spectromicroscopy with sub-micron spatial resolution was employed to analyze membrane foulants for the first time, and Fe2+/PMS was found to mainly cause reduced cake layer resistance, which was attributed to the collectively reduced concentration of algae cells, micro-particles with sizes from 2 to 10 µm, humic substances and biopolymers. Moreover, Fe2+/PMS resulted in lower dissolved Fe3+ (<0.027 mg/L) in ultrafiltration (UF) permeate, which would make it more reliable for SWRO operation as compared to conventional coagulation. When energy-intensive dissolved air flotation (DAF) was employed to withstand HAB, Fe2+/PMS outperformed it and was instrumental in achieving reduced MFI with 56.4% lower operational cost. In this context, Fe2+/PMS would facilitate a high-performance and low-cost pretreatment technology for seawater desalination plants under HAB.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| | - Xiaohui Lu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuyao Fu
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Liyue Diao
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sungwoo Bae
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
7
|
Yu H, Huang H, Zhong L, Wu S, Yang H, Rong H, Liang H, Qu F, Ma J. Evaluation of Front-Face Fluorescence for Assessing Cyanobacteria Fouling in Ultrafiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17649-17658. [PMID: 37910031 DOI: 10.1021/acs.est.3c07397] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cyanobacteria fouling in ultrafiltration (UF) drinking water treatment poses a significant threat to the stability and sustainability of the process. Both phycocyanin found in cyanobacteria and the polymer membrane exhibit strong fluorescence, which could be readily detected using front-face excitation-emission matrix (FF-EEM) spectroscopy. In this study, FF-EEM was employed for the nondestructive and in situ characterization of algae fouling evolution in UF, while also analyzing fouling mechanisms and reversibility. The results indicated that phycocyanin fluorescence on the membrane surface showed a linear correlation with the specific algal cell count on the membrane surface before reaching saturation. As fouling progressed, membrane fluorescence decreased, which was associated with the extent of the surface coverage on the membrane. The plateau in membrane fluorescence indicated full coverage, coinciding with the cake filtration mechanism, cake compression, and deterioration of fouling reversibility. These findings highlight the promise of FF-EEM as a valuable tool for monitoring and evaluating fouling of cyanobacteria in UF systems.
Collapse
Affiliation(s)
- Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Huan Huang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lin Zhong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shihua Wu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
8
|
Wang Y, Jiao Z, Li W, Zeng S, Deng J, Wang M, Ren L. Superhydrophilic membrane with photo-Fenton self-cleaning property for effective microalgae anti-fouling. CHINESE CHEM LETT 2023; 34:108020. [DOI: 10.1016/j.cclet.2022.108020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
10
|
Wang Y, Zheng X, Xiao K, Xue J, Ulbricht M, Zhang Y. How and why does time matter - A comparison of fouling caused by organic substances on membranes over adsorption durations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:160655. [PMID: 36563756 DOI: 10.1016/j.scitotenv.2022.160655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of time on the severity of adsorptive fouling on polyvinylidene fluoride (PVDF) membrane surface. Sodium alginate (SA), bovine serum albumin (BSA), and humic acid (HA) were selected as representative membrane foulants. We examined the fouling behavior of these three selected model foulants over different adsorption durations (i.e., ~2300 and ~20,000 s). The fouling experiments were performed under conditions with and without the presence of Ca2+. For the SA-Ca2+ system, a longer adsorption duration slightly increased adsorption amount of SA but sharply reduced the reversibility (from 86.8 % to 12.9 %). For BSA-Ca2+, extended time did not change the deposition amount of BSA on the membrane surface, but led to more residual BSA after cleaning (reversibility decreased from 11.3 % to 4.5 %). Similarly, in the HA-Ca2+ system, adsorption duration barely influenced the adsorption amount of HA, while reduced its reversibility from 39.4 to 32.2 %. Therefore, time duration significantly influenced the amount and reversibility of membrane fouling depending on their chemical property. Corresponding results can be well reflected by a selected mathematical model. Further investigation on relevant mechanisms was conducted, quartz crystal microbalance with dissipation (QCM-D) and atomic force microscope (AFM) measurements indicated that longer adsorption duration resulted in more compacted fouling layer and stronger foulant-membrane interaction force. Our results suggest that time (adsorption duration) plays an important role in determining the reversibility of membrane fouling, while the severity is related to the inherent characteristics of foulants.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| | - Kang Xiao
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China.
| |
Collapse
|
11
|
Sun J, Yu Z, Yang L, Chu H, Jiang S, Zhang Y, Zhou X. New insight in algal cell adhesion and cake layer evolution in algal-related membrane processes: Size-fractioned particles, initial foulant seeds and EDEM simulation. ENVIRONMENTAL RESEARCH 2023; 220:115162. [PMID: 36580982 DOI: 10.1016/j.envres.2022.115162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
A clear understanding of algal cell adhesion and cake layer evolution in algal-related membrane processes (ARMPs) is urgently required to mitigate the membrane fouling. In this study, the effect of microparticles (10 μm-30 μm), subvisible particles (0.45 μm-10 μm), and ultrafine particles (50 kDa-0.45 μm) on the membrane fouling were explored based on the filtration performance through Hermia models, thermodynamic analysis, and simulation of extended discrete element method (EDEM). The results illustrated that microparticles played an important role in algal cell aggregation and the formation of initial clusters. Intermediate blocking fouling occurred when filtrating the subvisible particle, which facilitated internal adhesion and enhanced biofilm formation. In addition, the interfacial attractive force for the initial algal adhesion was obviously increased when the membrane surfaces were in high concentration of protein and polysaccharide. Moreover, the EDEM simulation demonstrated that subsequent particles, particularly the particles with small sizes, preferred to occupy the spaces among the previously deposited particles. This study provided new insights into the contributions of size-fractioned particles to initial fouling and their influence on the successive adhesion of other contaminants.
Collapse
Affiliation(s)
- Jingjing Sun
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Zhenjiang Yu
- Rural Technology Development Center, Guangdong Academy of Environmental Sciences, Guangzhou 510000, China
| | - Libin Yang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Hunan Provincial Key Laboratory of Safe Discharge and Resource Utilization of Urban Water, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Huaqiang Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Shuhong Jiang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Ji CC, Chen KY, Deng SK, Wang JX, Hu YX, Xu XH, Cheng LH. Fouling evolution of extracellular polymeric substances in forward osmosis based microalgae dewatering. WATER RESEARCH 2023; 229:119395. [PMID: 36463677 DOI: 10.1016/j.watres.2022.119395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Membrane fouling was still a challenge for the potential application of forward osmosis (FO) in algae dewatering. In this study, the fouling behaviors of Chlorella vulgaris and Scenedesmus obliquus were compared in the FO membrane filtration process, and the roles of their soluble-extracellular polymeric substances (sEPS) and bound-EPS (bEPS) in fouling performance were investigated. The results showed that fouling behaviors could be divided into two stages including a quickly dropped and later a stable process. The bEPS of both species presented the highest flux decline (about 40.0%) by comparison with their sEPS, cells and broth. This performance was consistent with the largest dissolved organic carbon losses in feed solutions, and the highest interfacial free energy analyzed by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The chemical characterizations of algal foulants further showed that the severe fouling performance was also consistent with a proper ratio of carbohydrates and proteins contents in the cake layer, as well as the higher low molecular weight (LMW) components. Compared with the bEPS, the sEPS was crucial for the membrane fouling of S. obliquus, and an evolution of the membrane fouling structure was found in both species at the later filtration stage. This work clearly revealed the fundamental mechanism of FO membrane fouling caused by real microalgal suspension, and it will improve our understanding of the evolutionary fouling performances of algal EPS.
Collapse
Affiliation(s)
- Cheng-Cheng Ji
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ke-Yu Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shao-Kang Deng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Xiao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yun-Xia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin-Hua Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Hua Cheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; MOE Engineering Research Center of Membrane & Water Treatment Technology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
13
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
14
|
Witzmann T, Ramsperger AFRM, Wieland S, Laforsch C, Kress H, Fery A, Auernhammer GK. Repulsive Interactions of Eco-corona-Covered Microplastic Particles Quantitatively Follow Modeling of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8748-8756. [PMID: 35736564 DOI: 10.1021/acs.langmuir.1c03204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The environmental fate and toxicity of microplastic particles are dominated by their surface properties. In the environment, an adsorbed layer of biomolecules and natural organic matter forms the so-called eco-corona. A quantitative description of how this eco-corona changes the particles' colloidal interactions is still missing. Here, we demonstrate with colloidal probe-atomic force microscopy that eco-corona formation on microplastic particles introduces a compressible film on the surface, which changes the mechanical behavior. We measure single particle-particle interactions and find a pronounced increase of long-range repulsive interactions upon eco-corona formation. These force-separation characteristics follow the Alexander-de Gennes (AdG) polymer brush model under certain conditions. We further compare the obtained fitting parameters to known systems like polyelectrolyte multilayers and propose these as model systems for the eco-corona. Our results show that concepts of fundamental polymer physics, like the AdG model, also help in understanding more complex systems like biomolecules adsorbed to surfaces, i.e., the eco-corona.
Collapse
Affiliation(s)
- Thomas Witzmann
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Günter K Auernhammer
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
15
|
Yang Z, Yu H, Wei G, Ye L, Fan G, Fang Q, Rong H, Qu F. Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Jiang S, Xiao S, Chu H, Sun J, Yu Z, Zhang W, Chen Y, Zhou X, Zhang Y. Performance enhancement and fouling alleviation by controlling transmembrane pressure in a vibration membrane system for algae separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Diatomite Dynamic Membrane Fouling Behaviour during Dewatering of Chlorella pyrenoidosa in Aquaculture Wastewater. MEMBRANES 2021; 11:membranes11120945. [PMID: 34940445 PMCID: PMC8706875 DOI: 10.3390/membranes11120945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022]
Abstract
Combined microalgal and membrane filtration could effectively treat aquaculture wastewater; however, the membrane fouling induced by extracellular organic matter (EOM) during the dewatering process is an issue. This study investigated diatomite dynamic membrane (DDM) fouling behaviour during the dewatering of Chlorella pyrenoidosa under the influence of copper ions. The results indicate that copper ion heavy metals in aquaculture wastewater significantly affected purification and algae dewatering by DDM. Aquaculture wastewater with a high copper concentration (1 and 0.5 mg/L) could induce serious DDM fluxes and cake layer filtration resistance (Rc), whereas fewer filtration fluxes were induced when aquaculture wastewater had a low copper concentration, particularly that of 0.1 mg/L, at which the Rc was lowest and the concentration effect was highest. Macromolecular organics of EOM, such as biopolymers, polysaccharides, and proteins, were responsible for DDM fouling and accumulated mostly in the slime layer, whereas only a small amount of them accumulated in the diatomite layer. The DDM rejected more protein-like organics of EOM in the slime layer when dewatering algae at low copper concentrations (<0.1 mg/L); however, when using the DDM to dewater algae at high copper concentrations, more polysaccharides of EOM were rejected (0.5 < Cu2+ < 5 mg/L). This result has significant ramifications for aquaculture wastewater treatment as well as algae separation and concentration by the DDM.
Collapse
|