1
|
Park J, Park H, Jang JU, Kim H, Park H, Iqbal T, Oh HS, Choo KH, Lee K. Benefits of fungal-to-bacterial quorum quenching as anti-biofouling strategy in membrane bioreactors for wastewater treatment and water reuse. BIORESOURCE TECHNOLOGY 2024; 403:130848. [PMID: 38761868 DOI: 10.1016/j.biortech.2024.130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This study addresses membrane biofouling in membrane bioreactors (MBRs) by exploring fungal-to-bacterial quorum quenching (QQ) strategies. While most research has been focused on bacterial-to-bacterial QQ tactics, this study identified fungal strain Vanrija sp. MS1, which is capable of degrading N-acyl-homoserine lactones (signaling molecules of Gram-negative bacteria). To determine the benefits of fungal over bacterial strains, after immobilization on fluidizing spherical beads in an MBR, MS1 significantly reduced the fouling rate by 1.8-fold compared to control MBR, decreased extracellular polymeric substance levels in the biofilm during MBR operation, and favorably changed microbial community and bacterial network, resulting in biofouling mitigation. It is noteworthy that, unlike Rhodococcus sp. BH4, MS1 enhanced QQ activity when switching from neutral to acidic conditions. These results suggest that MS1 has the potential for the effective treatment of acidic industrial wastewater sources such as semiconductor and secondary battery wastewater using MBRs.
Collapse
Affiliation(s)
- Jeongmi Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeyeon Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-U Jang
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyunjung Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeona Park
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tahir Iqbal
- School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry, Kyungpook National University, Daegu 41566, Republic of Korea; School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
3
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
4
|
Radmehr S, Kallioinen-Mänttäri M, Mänttäri M. Interplay role of microalgae and bio-carriers in hybrid membrane bioreactors on wastewater treatment, membrane fouling, and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122764. [PMID: 37852316 DOI: 10.1016/j.envpol.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Algal membrane bioreactors (algae-MBRs) and advanced hybrid biocarrier algal membrane bioreactors (hybrid algae-MBRs) have been investigated to improve the performance of conventional MBRs (C-MBRs). Maximum chemical oxygen demand and nutrient removal efficiencies, similar to the maximum biomass growth rate, chlorophyll-a concentration, and balanced microbial growth, were achieved in the hybrid algae-MBR inoculated with polyethylene biocarriers and algal cells. During the 90 days of operation, the hybrid algae-MBR demonstrated lower membrane fouling without membrane washing, whereas the C-MBR and algae-MBR were washed seven and four times, respectively. Compared to the C-MBR, both the algal MBR and hybrid algal MBR exhibited higher levels of nitrification, with 6 and 10 % greater rates, respectively. In addition, they displayed significant improvements in ammonium biomass uptake compared to the C-MBR, with increases of 30 and 37 %, respectively. In the algae-MBR, the chlorophyll-a results showed proliferation of algae over time. However, biocarriers that provide an additional surface for microbial growth, particularly algal strains, inhibit algal proliferation and result in balanced microbial growth (based on chlorophyll-a/MLVSS) in the bulk solution of the hybrid algae-MBR. In addition, the oxygen mass balance estimated that photosynthesis provided 45 % of the dissolved oxygen required in the studied algal reactors, whereas mixing provided the remainder. Additionally, microbial sequencing results indicated that the microbial communities (e.g., Candidatus, Cloacibacterium, and Falavobacterium) were altered by introducing microalgae and biocarriers that affected the activity of different microorganisms, changed the sludge and fouling layer properties, and improved the performance of the C-MBRs.
Collapse
Affiliation(s)
- Shahla Radmehr
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland.
| | - Mari Kallioinen-Mänttäri
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland
| | - Mika Mänttäri
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland
| |
Collapse
|
5
|
Yang B, Liang W, Bin L, Chen W, Chen X, Li P, Wen S, Huang S, Tang B. Insights into the life-cycle of aerobic granular sludge in a continuous flow membrane bioreactor by tracing its heterogeneous properties at different stages. WATER RESEARCH 2023; 243:120419. [PMID: 37536250 DOI: 10.1016/j.watres.2023.120419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weifeng Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xinyi Chen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shanglong Wen
- Guangdong Guangshen Environmental Protection Technology Co., Ltd., Guangzhou, 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Wei P, Li J, Zhang J, Zhang Y, Luo R, Xie C, Wang Z. Bioaugmentation with an aerobic denitrifying bacterium with quorum quenching activity for improved nitrogen removal and reduced membrane fouling in anoxic/oxic membrane bioreactor. RSC Adv 2023; 13:2345-2354. [PMID: 36741184 PMCID: PMC9841441 DOI: 10.1039/d2ra06676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
In this study, an aerobic denitrifying bacterium with quorum quenching activity, Acinetobacter sp. WZL728, was inoculated into the anoxic/oxic membrane bioreactor (A/O-MBR) to study its effects on A/O-MBR performance. The pollutant removal and membrane fouling between A/O-MBR with WZL728 (EMBR) and A/O-MBR without WZL728 (CMBR) were compared. WZL728 increased the total nitrogen removal efficiency from 75.05% in CMBR to 91.03% in EMBR and extended the filtration cycle from 5.44 days in CMBR to 9.57 days in EMBR, which indicated that WZL728 improved the pollutant removal performance and mitigated membrane fouling of A/O-MBR. The concentration of N-acyl-homoserine lactones in the biocake of EMBR (EMBRB) was 11.23% of that in the biocake of CMBR (CMBRB). The content of extracellular polymeric substances (EPS) in EMBRB was 69.00% of that in CMBRB. The abundance of bacteria associated with EPS secretion (Alpthaproteobacteria) decreased and the abundance of bacteria associated with EPS degradation (Clostridia) increased in EMBRB. Valine, alanine and uridine diphosphate-N-acetylgalactosamine associated with protein and polysaccharide synthesis were significantly lower in EMBRB than those in CMBRB, which revealed the reason for the decrease of protein and polysaccharide content of EPS within EMBRB. This study provides useful information for improving A/O-MBR performance by probiotics.
Collapse
Affiliation(s)
- Pengyuan Wei
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of TechnologyBeijing 100124PR China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of TechnologyBeijing 100124PR China
| | - Jing Zhang
- Beijing City Drainage Refco Group LtdBeijing 100124PR China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of TechnologyBeijing 100124PR China
| | - Rong Luo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of TechnologyBeijing 100124PR China
| | - Chaofan Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of TechnologyBeijing 100124PR China
| | - Zhaozhao Wang
- The College of Energy and Environmental Engineering, Hebei University of EngineeringHandan 056038PR China
| |
Collapse
|
7
|
Xiao X, Guo H, Ma F, Zhang J, Ma X, You S. New insights into mycelial pellets for aerobic sludge granulation in membrane bioreactor: Bio-functional interactions among metazoans, microbial communities and protein expression. WATER RESEARCH 2023; 228:119361. [PMID: 36402059 DOI: 10.1016/j.watres.2022.119361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Direct cultivation of aerobic granular sludge (AGS) in membrane bioreactor (MBR) has gained increasing attention. Mycelial pellets (MPs) has been shown capable of promoting rapid granulation of aerobic sludge in MBR, yet mechanisms remain unclear and in-depth insight into cross-scale interactions between MPs and indigenous microbiota as well as the corresponding protein expression functions is necessary. Herein, we found that the addition of MPs in MBR resulted in massive growth of metazoans with 40-400 /mL for rotifers, 20-140 /mL for nematodes and 2-420 /mL for oligochaetes in the initial phase of granulation. This facilitated the MPs to rapidly aggregate with bacteria to form defensive granules for physical protection from predation by metazoans, which inhibited the overgrowth of filamentous bacteria Thiothrix and promoted the reproduction of functional bacteria related to nitrogen removal (Nitrospira, Trichococcus and Acinetobacter). Proteomic analysis demonstrated that the upregulation of functional proteins was mainly ascribed to the decrease of Thiothrix and the increase of Nitrospira, resulting in the enhancement of metabolic pathways involved in glycolysis/gluconeogenesis, citrate (TCA) cycle, oxidative phosphorylation, pyruvate metabolism, nitrogen metabolism and biosynthesis of amino acids, which was responsible for MPs-induced AGS with denser structure, more abundant proteins and β-polysaccharides, higher species diversity, significant nitrogen removal (33.12-42.33%) and lower membrane fouling potential. This study provided a novel and comprehensive insight into the enhanced granulation of aerobic sludge by MPs and the functional superiority of MPs-induced AGS in MBR system.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiping Ma
- School of Environment, Liaoning University, Shenyang 110036, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
8
|
Zhu J, You H, Ng HY, Li Z, Xie B, Chen H, Ding Y, Tan H, Liu F, Zhang C. Impacts of bio-carriers on the characteristics of cake layer and membrane fouling in a novel hybrid membrane bioreactor for treating mariculture wastewater. CHEMOSPHERE 2022; 300:134593. [PMID: 35427670 DOI: 10.1016/j.chemosphere.2022.134593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling is generally considered as a major bottleneck to the wide application of membrane bioreactor (MBR) for high saline mariculture wastewater treatment. Though numerous researches have investigated the membrane fouling of MBR combined with bio-carriers, few studies reveal the impacts of bio-carriers on the characteristics of cake layer and the mechanism of bio-carriers alleviating membrane fouling. In this study, two systems, namely carriers-enhanced MBR (R1) and conventional MBR (R2) were parallel operated, drawing a conclusion that bio-carriers effectively improved the characteristics of cake layer, thus mitigating membrane fouling. Fluorescence excitation emission matrix (EEM) analysis indicated that bio-carriers reduced the adhesion of proteins and humic acid-like materials on membrane surface. Molecular weight (Mw) distribution suggested that soluble microbial products (SMP) with small Mw (6-20 kDa) and biopolymers in extracellular polymeric substances (EPS) (50-300 kDa) was easier to accumulate on membrane surface in R2. The above results indicated that the presence of bio-carriers could effectively reduce the attachment of these organics on membrane surface, contributing to a larger porosity of cake layer and thus mitigating membrane fouling. Meanwhile, gas chromatography-mass spectrometry (GC-MS) clarified that more components were present in R2 than R1. Moreover, the majority of compounds in the SMP were present in both systems, while only 14 compounds in the EPS were the same between R1 and R2. Noticeably, certain aromatics only existed in R2, suggesting that bio-carriers effectively reduced the accumulation of recalcitrant materials, especially aromatics. These results revealed that bio-carriers shifted the precise composition of cake layers.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - How Yong Ng
- Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Hongying Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Ding
- Marine College, Shandong University at Weihai, Weihai, 264209, China
| | - Haili Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Chen H, Tian Y, Hu Z, Wang C, Xie P, Chen L, Yang F, Liang Y, Mu C, Wei C, Ting YP, Qiu G, Song Y. Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) mediated membrane fouling in membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Xiao X, Ma F, You S, Guo H, Zhang J, Bao X, Ma X. Direct sludge granulation by applying mycelial pellets in continuous-flow aerobic membrane bioreactor: Performance, granulation process and mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126233. [PMID: 34743997 DOI: 10.1016/j.biortech.2021.126233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study provides a sustainable manner for direct cultivation of aerobic granular sludge (AGS) by addition of mycelial pellets (MPs) into continuous-flow aerobic MBR. The results showed that the granulation time in MPs-MBR was shortened by at least 65 days, accounting for enhanced mean size of granules (0.68-0.76 mm), increased mixed liquor suspended solids (MLSS) concentration (12.8 g/L) and improved settling ability (78.1 mL/g), in comparison with that of 0.23-0.28 mm, 9.8 g/L and 102.1 mL/g in control MBR. MPs-MBR demonstrated significant advantages in terms of COD reduction (97.0-99.1%), NH4+-N reduction (100%) and TN reduction (32.27-42.33%). MPs, extracellular polymeric substances (EPS) and filamentous bacteria acted as inducible nucleus, crosslinking matter and supporting skeleton, respectively, in favor of promoting the formation and stabilization of AGS with a four-layered structure. The relevant mechanism was underlined by rheological analysis, indicating that MPs addition enhanced non-Newtonian flow characteristics and network structure of sludge.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China.
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaotong Bao
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China
| | - Xiping Ma
- School of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|