1
|
He S, Meng Y, Liu J, Huang D, Mi Y, Ma R. Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers (Basel) 2024; 16:1481. [PMID: 38891428 PMCID: PMC11175156 DOI: 10.3390/polym16111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. In this review, we summarized the recent development of CDs-based nanocomposite membranes in many application areas. Specifically, we paid attention to the structural regulation and functionalization of CDs-based nanocomposite membranes by CDs. Thus, a detailed discussion about the relationship between the CDs' properties and microstructures and the separation performance of the prepared membranes was presented, highlighting the advantages of CDs in designing high-performance separation membranes. In addition, the excellent optical and electric properties of CDs enable the nanocomposite membranes with multiple functions, which was also presented in this review.
Collapse
Affiliation(s)
- Shuheng He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Yiding Meng
- Zhejiang Institute of Standardization, Hangzhou 310007, China;
| | - Jiali Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Dali Huang
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Yifang Mi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.H.); (J.L.)
| | - Rong Ma
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Min K, Al Munsur AZ, Paek SY, Jeon S, Lee SY, Kim TH. Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15616-15624. [PMID: 36926797 DOI: 10.1021/acsami.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton exchange membrane water electrolysis (PEMWE) generates oxygen and hydrogen at the anode and cathode, respectively, by conducting protons generated at the anode to the cathode through a proton exchange membrane (PEM). The performance of PEMWE can be improved with faster catalytic reactions at each electrode; thus, the development of a PEM with excellent ionic conductivity and physicochemical stability is essential. Nafion, a type of perfluoro-sulfonic acid polymer, is the most widely used PEM material. However, despite its excellent conductivity and chemical stability, it exhibits high hydrogen permeability due to its structural characteristics. Quantum dots (QDs) have a hydrophilic functional group that can act as an ion conductor and are extremely compatible with the hydrophilic cluster of Nafion due to their characteristic nanosized structure. In this study, various compositions of N-doped carbon quantum dots (CQDs) containing hydrophilic functional groups were coated on a Nafion-212 membrane. The resulting series of CQD-coated Nafion membranes exhibited improvements in morphology and ionic conductivity as well as reductions in hydrogen permeability. In particular, the Nafion membrane coated with 0.75 wt % of N-doped CQD (CQD-cNafion-0.75) exhibited improved mechanical properties and higher oxidation stability compared to Nafion-212. It also displayed higher ionic conductivity of 240.3 mS cm-1 at 80 °C and reduced hydrogen permeability (about 10% reduction) compared to Nafion-212. In addition, the performance of single-cell PEMWE using the CQD-cNafion-0.75 membrane was found to be approximately 1.2 times higher than Nafion-212.
Collapse
Affiliation(s)
- Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - Abu Zafar Al Munsur
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Ujeong-ro, Naju-si, Jeollanam-do 58217, Republic of Korea
| | - Sae Yane Paek
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soomin Jeon
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| | - So Young Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, South Korea
| |
Collapse
|
3
|
Xie Z, Feng Q, Fang X, Dai X, Yan Y, Ding CF. One-Pot Preparation of Hydrophilic Glucose Functionalized Quantum Dots for Diabetic Serum Glycopeptidome Analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|