1
|
Huang Z, Zhang S, Liang J, Wu T, Zhang R, You X, Li R, Chen X, Fu Q. Nanofiltration Membrane with Enhanced Ion Selectivity Based on a Precision-Engineered Ultrathin Polyethylene Supporting Layer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65281-65294. [PMID: 39536168 DOI: 10.1021/acsami.4c12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanofiltration (NF) technology is increasingly used in the water treatment and separation fields. However, most research has focused on refining the selective layer while overlooking the potential role of the supporting layer. With expertise in ultrathin polymer films, particularly in the production of polyethylene (PE) membranes, we explore the possibility of improving NF membrane performance by precisely controlling the structure and surface properties of the ultrathin supporting layer in this work. Here, we introduced an innovative NF membrane that used a submicrometer ultrathin PE membrane produced through a biaxial stretching process, which is significantly thinner than commercial PE membranes available on the market. The core innovations are as follows: first, we focused on precise control of the supporting layer rather than just the selective layer, achieving significant enhancements in overall NF membrane performance; second, the ultrathin PE supporting layer served as a tunable interface for interfacial polymerization, offering possibilities for structural control of the selective layer and advancing membrane performance innovations. The resulting NF membrane boasts an overall thickness of ∼630 nm, which represents the thinnest NF membrane documented to date. This ultrathin NF membrane showed an ultrahigh Cl-/SO42- selectivity of 338.03, placing it at the forefront of existing literature. This study sheds light on the important role of the supporting layer in the preparation of selective layers. We believe that this approach has the potential to contribute to the development of ultrathin, high-performance NF membranes.
Collapse
Affiliation(s)
- Zhenxu Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shiyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jing Liang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tao Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xinda You
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108, China
| | - Runlai Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
3
|
Shen Q, Song Q, Mai Z, Lee KR, Yoshioka T, Guan K, Gonzales RR, Matsuyama H. When self-assembly meets interfacial polymerization. SCIENCE ADVANCES 2023; 9:eadf6122. [PMID: 37134177 PMCID: PMC10156122 DOI: 10.1126/sciadv.adf6122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Interfacial polymerization (IP) and self-assembly are two thermodynamically different processes involving an interface in their systems. When the two systems are incorporated, the interface will exhibit extraordinary characteristics and generate structural and morphological transformation. In this work, an ultrapermeable polyamide (PA) reverse osmosis (RO) membrane with crumpled surface morphology and enlarged free volume was fabricated via IP reaction with the introduction of self-assembled surfactant micellar system. The mechanisms of the formation of crumpled nanostructures were elucidated via multiscale simulations. The electrostatic interactions among m-phenylenediamine (MPD) molecules, surfactant monolayer and micelles, lead to disruption of the monolayer at the interface, which in turn shapes the initial pattern formation of the PA layer. The interfacial instability brought about by these molecular interactions promotes the formation of crumpled PA layer with larger effective surface area, facilitating the enhanced water transport. This work provides valuable insights into the mechanisms of the IP process and is fundamental for exploring high-performance desalination membranes.
Collapse
Affiliation(s)
- Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Watanabe T, Nakagawa K, Gonzales RR, Kitagawa T, Matsuoka A, Kamio E, Yoshioka T, Matsuyama H. Influence of structure of porous polyketone microfiltration membranes on separation of water‐in‐oil emulsions. J Appl Polym Sci 2023. [DOI: 10.1002/app.53900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Xu P, Gonzales RR, Hong J, Guan K, Chiao YH, Mai Z, Li Z, Rajabzadeh S, Matsuyama H. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Shalaby MS, Abdallah H, Wilken R, Christoph S, Shaban AM, Gaber MH, Sołowski G. Effect graphene oxide nanostructure/tannic acid on mixed polymeric
substrate‐surface
modified
RO
membranes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marwa S. Shalaby
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Heba Abdallah
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Ralph Wilken
- Abteilungsleiter Plasmatechnik und Oberflächen Fraunhofer Institute for Manufacturing Technologies and Advanced Materials (IFAM) Bremen Germany
| | - Schmüser Christoph
- Abteilungsleiter Plasmatechnik und Oberflächen Fraunhofer Institute for Manufacturing Technologies and Advanced Materials (IFAM) Bremen Germany
| | - Ahmed M. Shaban
- Water Pollution Research Department Environmental Research Institute, National Research Centre Giza Egypt
| | - Marwa H. Gaber
- Chemical Engineering Department Engineering Research & Renewable Energy Institute, National Research Centre Giza Egypt
| | - Gaweł Sołowski
- Department of Molecular Biology and Genetics Faculty of Science and Art, Bingol University Bingol Turkey
| |
Collapse
|
7
|
Yang H, Zhang Z, Wang Y. Cavitating substrates to boost water permeance of reverse osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Gonzales RR, Sasaki Y, Istirokhatun T, Li J, Matsuyama H. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Guan K, Ushio K, Nakagawa K, Shintani T, Yoshioka T, Matsuoka A, Kamio E, Jin W, Matsuyama H. Integration of thin film composite graphene oxide membranes for solvent resistant nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Yao X, Guan K, Sasaki Y, Shintani T, Nakagawa K, Matsuyama H. Zwitterion grafted forward osmosis membranes with superwetting property via atom transfer radical polymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.52689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuesong Yao
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
| | - Yuji Sasaki
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
| | - Takuji Shintani
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Graduate School of Science, Technology and Innovation Kobe University Kobe Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Graduate School of Science, Technology and Innovation Kobe University Kobe Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology Kobe University Kobe Japan
- Department of Chemical Science and Engineering Kobe University Kobe Japan
| |
Collapse
|
11
|
Effect of polymer-solvent compatibility on polyamide hollow fiber membranes prepared via thermally induced phase separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yao X, Gonzales RR, Sasaki Y, Lin Y, Shen Q, Zhang P, Shintani T, Nakagawa K, Matsuyama H. Surface modification of FO membrane for improving ammoniacal nitrogen (NH4+-N) rejection: Investigating the factors influencing NH4+-N rejection. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Novel organic solvent nanofiltration membrane based on inkjet printing-assisted layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Gonzales RR, Kato N, Awaji H, Matsuyama H. Development of polydimethylsiloxane composite membrane for organic solvent separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|