1
|
Hussain S, Peng X, Wang L. Porphyrinic metal-organic frameworks as separation membranes: from synthesis to advanced applications. MATERIALS HORIZONS 2025. [PMID: 40202798 DOI: 10.1039/d5mh00266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal-organic frameworks (MOFs) represent a distinctive class of flexible, highly porous, crystalline, and compatible nanomaterials that have garnered substantial attention for the fabrication of high-performance advanced separation membranes. The TCPP ligand, when coordinated with various metal ions and nodes, such as Cu2+, Zn2+, Co2+, Cd2+, Al2+, Fe2+ and Zr4+, synthesize different M-TCPP MOFs with diverse porous nanostructures, exhibiting different nano-morphologies, including ultrathin nano-sheets, -fibers, -particles, and -rods. These nanostructures act as fundamental building blocks for the preparation of both porous and dense membranes. The accessible side functionalities (dangling carboxyl groups) of the TCPP MOFs significantly enhance the hydrophilicity and facilitate the formation of compatible interfaces with various polymers. This enhanced hydrophilicity, coupled with membrane stability in water and under acidic conditions, the presence of surface nanopores and the creation of continuous selective micro-/nano-transport channels (upon the assembly of nanostructures), substantially improves the membrane permeance and selectivity. These attributes make TCPP MOFs membranes suitable for a wide range of separation applications. This review comprehensively summarizes the synthesis strategies of TCPP MOFs, their nano-morphologies, properties, and their integration into state-of-the-art separation membranes, such as mixed matrix membranes (MMMs), thin-film composite (TFC) membranes, and thin-film nanocomposite (TFN) membranes. It examines their performance, discusses challenges, and explores potential solutions. Furthermore, the versatile separation capabilities of TCPP MOFs membranes, including gaseous, liquid, and ionic separation, as well as proton and metal ion conductivity are thoroughly analyzed in the light of mass transport theories and reported mechanisms. This review also delves into the photo-activity and photothermal effects of TCPP MOFs membranes, highlighting their implications for photocatalysis and membrane percolation. Finally, it outlines future directions and identifies potential opportunities for advancing TCPP MOFs membranes, aiming to elevate state-of-the-art separation technologies.
Collapse
Affiliation(s)
- Shabab Hussain
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Xinsheng Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| |
Collapse
|
2
|
Zhang K, Cheng P, Liu Y, Xia S. Efficient removal of per- and polyfluoroalkyl substances by a metal-organic framework membrane with high selectivity and stability. WATER RESEARCH 2024; 265:122276. [PMID: 39154397 DOI: 10.1016/j.watres.2024.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
3
|
Cheng P, Liu Y, Wei X, Fan K, Xia S. Distinct Efficacies of Interlayers in Tailoring Polyamide Nanofiltration Membrane Performance for Organic Micropollutant Removal: Dependent on Substrate Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14022-14033. [PMID: 39052879 DOI: 10.1021/acs.est.4c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Yue F, Shi M, Li C, Meng Y, Zhang S, Wang L, Song Y, Li J, Zhang H. S-scheme heterojunction Cu-porphyrin/TiO 2 nanosheets with highly efficient photocatalytic reduction of CO 2 in ambient air. J Colloid Interface Sci 2024; 665:1079-1090. [PMID: 38581719 DOI: 10.1016/j.jcis.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Directly capturing CO2 in ambient air and converting it into value-added fuels using photocatalysis is a potentially valuable technology. In this study, Cu-porphyrin (tetrakis-carboxyphenyl porphyrin copper, CuTCPP) was innovatively anchored on the surface of TiO2 (titanium dioxide) nanosheets to form an S-scheme heterojunction. Based on this, a photocatalytic reaction system for stably converting CO2 in ambient air into value-added fuels at the gas-solid interface was constructed without addition of sacrificial agents and alkaline liquids. Under the illumination of visible light and sunlight, the evolution rate of CO is 56 μmol·g-1·h-1 and 73 μmol·g-1·h-1, respectively, with a potential CO2 conversion rate of 35.8 % and 50.4 %. The enhanced of photocatalytic performance is attributed to the introduction of CuTCPP, which provides additional active sites, significantly improves capture capacity of CO2 and the utilization of electrons. Additionally, the formation of S-scheme heterojunction expands the redox range and improves the separation efficiency of photo-generated charges.
Collapse
Affiliation(s)
- Feng Yue
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengke Shi
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Cong Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Yang Meng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuo Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China.
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Sun W, Sun J, Ding Q, Qi M, Zhou J, Shi Y, Liu J, Won M, Sun X, Bai X, Dong B, Kim JS, Wang L. Breaking Iron Homeostasis: Iron Capturing Nanocomposites for Combating Bacterial Biofilm. Angew Chem Int Ed Engl 2024; 63:e202319690. [PMID: 38320965 DOI: 10.1002/anie.202319690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jing Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jia Liu
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
- TheranoChem Incorporation, Seoul, 02856, Republic of, Korea
| | - Xiaolin Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of, Korea
- TheranoChem Incorporation, Seoul, 02856, Republic of, Korea
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
6
|
Wang J, Song Z, He M, Qian Y, Wang D, Cui Z, Feng Y, Li S, Huang B, Kong X, Han J, Wang L. Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Nat Commun 2024; 15:2125. [PMID: 38459037 PMCID: PMC10923900 DOI: 10.1038/s41467-024-46439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Nanofluidic membranes offer exceptional promise for osmotic energy conversion, but the challenge of balancing ionic selectivity and permeability persists. Here, we present a bionic nanofluidic system based on two-dimensional (2D) copper tetra-(4-carboxyphenyl) porphyrin framework (Cu-TCPP). The inherent nanoporous structure and horizontal interlayer channels endow the Cu-TCPP membrane with ultrahigh ion permeability and allow for a power density of 16.64 W m-2, surpassing state of-the-art nanochannel membranes. Moreover, leveraging the photo-thermal property of Cu-TCPP, light-controlled ion active transport is realized even under natural sunlight. By combining solar energy with salinity gradient, the driving force for ion transport is reinforced, leading to further improvements in energy conversion performance. Notably, light could even eliminate the need for salinity gradient, achieving a power density of 0.82 W m-2 in a symmetric solution system. Our work introduces a new perspective on developing advanced membranes for solar/ionic energy conversion and extends the concept of salinity energy to a notion of ionic energy.
Collapse
Affiliation(s)
- Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China.
| | - Zeyuan Song
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing, 100190, China
| | - Di Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Zheng Cui
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Yuan Feng
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Shangzhen Li
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Bo Huang
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, China
| | - Xiangyu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing, 100190, China.
| | - Jinming Han
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an, 710000, China.
| |
Collapse
|
7
|
Cheng P, Zhu T, Wang X, Fan K, Liu Y, Wang XM, Xia S. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12879-12889. [PMID: 37582261 DOI: 10.1021/acs.est.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Tongren Zhu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Wu P, Gong F, Feng X, Xia Y, Xia L, Kai T, Ding P. Multimetallic nanoparticles decorated metal-organic framework for boosting peroxidase-like catalytic activity and its application in point-of-care testing. J Nanobiotechnology 2023; 21:185. [PMID: 37296435 DOI: 10.1186/s12951-023-01946-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a sort of promising peroxidase-like nanozyme but face the challenge that the inorganic nodes in most of the MOF structures are generally blocked by the organic linkers. Further enhancement or activation of their peroxidase-like activity plays an important role in developing MOF-based nanozymes. Herein, a multimetallic nanoparticle (NP) decorated-MOF, Cu/Au/Pt NP decorated-Cu-TCPP(Fe) nanozyme (CuAuPt/Cu-TCPP(Fe)) was synthesized in situ and served as a peroxidase-like nanozyme. The peroxidase-like activity of this stable CuAuPt/Cu-TCPP(Fe) nanozyme was enhanced due to the decreased potential barriers for *OH generation in the catalytic process. Owing to the remarkable peroxidase-like activity, a CuAuPt/Cu-TCPP(Fe)-based colorimetric assay was established for the sensitive determination of H2O2 and glucose with the limit of detection (LOD) of 9.3 µM and 4.0 µM, respectively. In addition, a visual point-of-care testing (POCT) device was developed by integrating the CuAuPt/Cu-TCPP(Fe)-based test strips with a smartphone and was employed for a portable test of 20 clinical serum glucose samples. The results determined by this method agree well with the values deduced by clinical automatic biochemical analysis. This work not only represents an inspiration for the usage of MNP/MOF composite as a novel nanozyme for POCT diagnosis, but also provides a deeper insight and understanding into the enhanced enzyme-mimic effect of MNP-hybrid MOF composites, which in turn will guide the engineering of MOF-based functional nanomaterials. Graphical Abstract.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Xiangling Feng
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China
| | - Yong Xia
- Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Lehuan Xia
- Chenzhou Third People's Hospital, Chenzhou, Hunan, 423000, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, China.
| |
Collapse
|
9
|
Hu A, Liu Y, Zheng J, Wang X, Xia S, Van der Bruggen B. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. WATER RESEARCH 2023; 234:119821. [PMID: 36889093 DOI: 10.1016/j.watres.2023.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.
Collapse
Affiliation(s)
- Airan Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
10
|
Xu Y, Gong H, Ren H, Fan X, Li P, Zhang T, Chang K, Wang T, He J. Highly Efficient Cu-Porphyrin-Based Metal-Organic Framework Nanosheet as Cathode for High-Rate Li-CO 2 Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203917. [PMID: 36156850 DOI: 10.1002/smll.202203917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The lithium-carbon dioxide (Li-CO2 ) battery as a novel metal-air battery has a high specific energy density and unique CO2 conversion ability. However, its further development is limited by incomplete product decomposition resulting in poor cycling and rate performance. In this work, Cu-tetra(4-carboxyphenyl) porphyrin (Cu-TCPP) nanosheets are prepared through the solvothermal method successfully. An efficient Li-CO2 battery with Cu-TCPP as catalyst achieves a high discharge capacity of 20393 mAh g-1 at 100 mA g-1 , a long-life cycle of 123 at 500 mA g-1 , and a lower overpotential of 1.8 V at 2000 mA g-1 . Density functional theory calculation reveals that Cu-TCPP has higher adsorption energy of CO2 and Li2 CO3 compared with TCPP, and a large number of electrons gather near the Cu-N4 active sites in Cu-TCPP. Therefore, the excellent CO2 capture ability of the porphyrin ligand and the synergic catalytic effect of Cu atom in Cu-TCPP promote the thermodynamics and kinetics of CO2 reduction and evolution processes.
Collapse
Affiliation(s)
- Yunyun Xu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Hao Ren
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Peng Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tengfei Zhang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Tao Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jianping He
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
11
|
Cheng YL, Wei L, Liu SZ, Yi XG, Chen WT, Lin WS. A novel supramolecular porphyrin-fullerene compound: Crystal structure and photophysical properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Chen J, Wu X, Chen C, Chen Y, Li W, Wang J. Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomization for highly stable and selective organics permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wang F, Wang Z, Wang S, Meng X, Jin Y, Yang N, Sunarso J, Liu S. Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Wu P, Ye X, Wang D, Gong F, Wei X, Xiang S, Zhang J, Kai T, Ding P. A novel CRISPR/Cas14a system integrated with 2D porphyrin metal-organic framework for microcystin-LR determination through a homogeneous competitive reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127690. [PMID: 34799170 DOI: 10.1016/j.jhazmat.2021.127690] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Selective and sensitive detection of microcystin-LR (MC-LR) is of vital importance because of its high toxicity and broad distribution. Herein, a novel and versatile fluorescence sensor (Cas14-pMOFs fluorescence sensor) was developed by combining the CRISPR/Cas14a system with a 2D porphyrin metal-organic framework nanosheets (2D-pMOFs) for MC-LR determination. The designed CRISPR/Cas14a system was activated by the unbound complementary DNA (cDNA), which was positively correlated with MC-LR concentration. Furthermore, the activated Cas14a protein was utilized to indiscriminately cleave the FAM-labeled single-stranded DNA (ssDNA-FAM), which was pre-absorbed on Cu-TCPP(Fe) nanosheets. Because of the desorption of the cleaved ssDNA-FAM, the pre-quenched fluorescence signal was recovered. Owing to the excellent performance in quantifying cDNA using this Cas14-pMOFs fluorescence sensor with a limit of detection (LOD) of 0.12 nM, this Cas14-pMOFs fluorescence sensor was able to detect MC-LR in a range from 50 pg/mL to 1 μg/mL with the LOD of 19 pg/mL. This work not only provided a new insight for the exploration of fluorescence sensors based on 2D-pMOFs coupled with CRISPR/Cas14a, but also, demonstrated its universality in both nucleic acid and non-nucleic acid targets determination.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| |
Collapse
|