1
|
Dong H, Tong L, Cheng M, Hou S. Utilizing electrospun molecularly imprinted membranes for food industry: Opportunities and challenges. Food Chem 2024; 460:140695. [PMID: 39098194 DOI: 10.1016/j.foodchem.2024.140695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Molecularly imprinted polymers (MIPs) have been widely studied in environmental protection and food industry, owing to their excellent specific recognition and structural stability. However, MIPs prepared by conventional methods suffer from low adsorption capacity and slow mass transfer rate. To date, the combination of electrostatic spinning technology and molecular imprinting technology has been proposed to prepare molecularly imprinted membranes (MIMs) with specific recognition capability, and has shown great attraction in the separation and detection of food additives, as well as the extraction and release of active ingredients. In recent years, MIPs and electrostatic spinning technologies have been investigated and evaluated. However, there is no review of electrostatically spun MIMs for food field. In this review, we focus on the fabrication methods and applications of electrostatically spun MIMs in the food, discuss the challenges in practical food applications, and emphasize the promising applications of electrostatically spun MIMs in food field.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Liping Tong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Mengmeng Cheng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shifeng Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China; Key Laboratory of Agricultural Membrane Application of Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong, PR China.
| |
Collapse
|
2
|
Yin H, Hang Q, Xue T, Yuan Y, Qin F, Xiong Z. A dual-recognition strategy based on pH-responsive molecularly imprinted membrane for highly selective capture of catecholamines: From construction to practical application. Anal Chim Acta 2024; 1327:343173. [PMID: 39266064 DOI: 10.1016/j.aca.2024.343173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Catecholamines (CAs) are involved in a wide range of physiological and pathological processes in the body and are progressively being used as important biomarkers for a variety of diseases. It is of great significance for accurate quantification of CAs to the diagnosis and treatment of diseases. However, the separation of CAs from complex biological matrices is still a great challenge due to the trace levels of CAs and the limited selectivity of existing pretreatment methods. RESULTS In this work, a dual-recognition imprinted membrane (BA-MIM) was developed to utilize the synergistic action of pH-responsive boron affinity and molecular imprinted cavities for highly selective capture and release of CAs. The prepared BA-MIM possessed remarkable adsorption capacity (maximum capacity, 43.3 mg g-1), desirable surface hydrophilicity (46.2°), superior selectivity (IF = 6.2, α = 14.3), as well as favorable reusability (number of cycles, 6 times). On this basis, an integrated analytical method based on BA-MIM extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was innovatively developed to highly selective separation, enrichment, and detection of CAs in rat brain tissue. Under the optimum conditions, a low quantitation limits (0.05-0.10 ng mL-1), wide linear range (10-1000 ng mL-1), good linearity (r2 > 0.99), and satisfactory recoveries (88.5%-98.5 %) were obtained for CAs. The proven method was further applied to kidney-yang-deficiency-syndrome (KYDS) group rat model, revealed the intrinsic connection between kidney disease and catecholamine metabolism. SIGNIFICANCE This work provides an excellent reference paradigm for the effective construction of dual-recognition functional membrane material to the high-selective analysis of trace targets in complex matrices. Additionally, this integrated analytical strategy demonstrates its efficiency, sustainability, versatility, and convenience, showing remarkable prospect in a variety of applications for biological sample analysis.
Collapse
Affiliation(s)
- Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Qian Hang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Tianyi Xue
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China.
| |
Collapse
|
3
|
Jiang Y, He Z, Zhang T, Yang J, Fan Y, Lu Z, Cai K, Sun Q, Wang F. Degradation and detoxification of ribavirin by UV/chlorine/Fe(II) process in water treatment system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48164-48174. [PMID: 39017866 DOI: 10.1007/s11356-024-34399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Ribavirin (RBV), which is extensively used to treat viral diseases such as COVID-19, is considered one of the major emerging contaminants due to its long-term existence and health risk in the aqueous environmental system. However, research on effective removal of RBV still remains insufficient. In this study, we investigated the RBV degradation kinetics and mechanism in UV/chlorine/Fe(II) process. The degradation rate constant kobs-RBV of RBV was 2.52 × 10-4 s-1 in UV/chlorine/Fe(II) process, which increased by 1.6 times and 1.3 times than that in chlorine alone and UV/chlorine process, respectively. Notably, trace amount Fe(II) promoted RBV degradation in UV/chlorine system through Fe2+/Fe3+ cycles, enhancing the yield of reactive species such as HO· and certain species reactive chlorine radicals (RCS). The contributions of HO· and RCS toward RBV degradation were 53.91% and 16.11%, respectively. Specifically, Cl·, ClO·, and Cl2·- were responsible for 8.59%, 2.69%, and 4.83% of RBV removal. The RBV degradation pathway indicated that the reactive species preferentially attacked the amide moiety of RBV, which cleaved the ether bond and the hydroxyl group. The toxicity evaluation of RBV degradation products elucidated that UV/chlorine/Fe(II) process was beneficial for RBV detoxification.
Collapse
Affiliation(s)
- Yayin Jiang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhenle He
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Tao Zhang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350117, Fujian, China
| |
Collapse
|
4
|
Cao J, Liu Y, Wang W, Du P, Liu G, Ma Y, Wang Y. Facile fabricate sandwich-structured molecularly imprinted dopamine polymer for simultaneously specific capture of Low-density lipoprotein and eliminate "bad cholesterol". J Chromatogr A 2024; 1724:464910. [PMID: 38657316 DOI: 10.1016/j.chroma.2024.464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 μg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.
Collapse
Affiliation(s)
- Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Gang Liu
- Shandong Provincial Animal Husbandry General Station, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Chai J, Zheng J, Tong Y, Chai F, Tian M. Construction of the molecularly imprinted adsorbent based on shaddock peel biochar sphere for highly sensitive detection of ribavirin in food and water resources. ENVIRONMENTAL RESEARCH 2023; 236:116756. [PMID: 37507037 DOI: 10.1016/j.envres.2023.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Ribavirin (RBV) that is not metabolically released into the environment can contaminate the environment and even make organisms resistant to it. Therefore, it is of great significance to establish a simple and effective method for adsorbing RBV in the environment. In this study, a novel biochar-based boronate affinity molecularly imprinted polymers (C@H@B-MIPs) were synthesized. This is the first time that shaddock peel biochar sphere was used as a carrier for specific recognition of RBV. The polymerization conditions were optimized and the binding properties of RBV were studied. Benefiting from the synergistic effect of boronate affinity and surface imprinting, the C@H@B-MIPs showed rapid equilibrium kinetics of 15 min, high adsorption capacity of 18.30 mg g-1, and excellent reusability for RBV. The linear range was 0.05-100 mg L-1, and the detection limit was 0.023 mg L-1. This method was triumphant applied to the selective adsorption of RBV in food and water resources with recovery rates of 81.4-97.7%. This study provides a practical platform for the manufacture of efficient biomass-based adsorbents.
Collapse
Affiliation(s)
- Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Junlei Zheng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| |
Collapse
|
6
|
Zhang K, Yan M, Li Y, Ma F, Wu Y. Precise identification and ultrafast transport of specific molecules with nanofluid-functionalized imprinted membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131134. [PMID: 36871464 DOI: 10.1016/j.jhazmat.2023.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based imprinted sites for achieving specific molecule transport and precise recognition have great potential to revolutionize nanofiltration technology. Nonetheless, how to efficiently prepare imprinted membrane structures with accurate identification - ultrafast molecular transport - high stability in mobile phase remains a key issue and serious challenge. Herein, we have developed a dual-activation strategy to constructing nanofluid-functionalized membranes with double imprinted nanoscale channels (NMDINCs), realizing ultrafast transport performance as well as structure&size-exclusion selectivity in allusion to particular compounds. The resultant NMDINCs, founded on principal nanofluid-functionalized construction companied by the boronate affinity sol-gel imprinting systems, illustrated that delicate regulation towards polymerization framework as well as functionalization belonging to distinctive membrane structures was crucial for realizing ultrafast molecules transport combined with prominent molecules selectivity. The synergistic recognition of covalent bonds and non-covalent bonds driven by two functional monomers effectively realized the selective recognition to template molecules, leading to the high selective separation factors of Shikimic acid (SA)/ Para hydroxybenzoic acid(PHA), SA/ P nitrophenol(PN)and catechol(CL)for 8.9, 8.14 and 7.23, respectively. The dynamic consecutive transport outcomes exhibited that numerous SA-dependent recognition sites could still keep reactivity under pump-driven permeation pressure for appreciable time, forcefully proving the successful construction as to high-efficiency membrane-based selective separation system. It is anticipated that this strategy as to the in situ introduction of nanofluid-functionalized construction into porous membrane would hold great promise in preparing high-intensities membrane-founded discriminating separation systems, which was equipped with prominent consecutive permeability as well as excellent selectivity.
Collapse
Affiliation(s)
- Kaicheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Song J, Yu C, Ma F, Lin R, Gao L, Yan Y, Wu Y. Design of molecularly imprinted nanocomposite membrane for selective separation of lysozyme based on double-faced self-assembly strategy. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Precise identification and transport of specific molecules through framework-functionalized membranes with multiple binding sites. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Gao J, Chen L, Xing W, Yu C, Yan Y, Wu Y. “Nanomagnet-inspired” design on molecularly imprinted nanofiber membrane: Mechanisms for improved transport selectivity of sufficient specific sites. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Sun Q, Yang J, Fan Y, Cai K, Lu Z, He Z, Xu Z, Lai X, Zheng Y, Liu C, Wang F, Sun Z. The role of trace N-Oxyl compounds as redox mediator in enhancing antiviral ribavirin elimination in UV/Chlorine process. APPLIED CATALYSIS. B, ENVIRONMENTAL 2022; 317:121709. [PMID: 35812172 PMCID: PMC9254691 DOI: 10.1016/j.apcatb.2022.121709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 05/19/2023]
Abstract
Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 μM and 1 μM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.
Collapse
Affiliation(s)
- Qiyuan Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Jing Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yongjie Fan
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Zhilei Lu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhenle He
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zeping Xu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xingteng Lai
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yuyi Zheng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Changqing Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Feifeng Wang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
11
|
de Moraes Segundo JDDP, de Moraes MOS, Brito WR, Matos RS, Salerno M, Barcelay YR, Segala K, da Fonseca Filho HD, d’Ávila MA. Molecularly Imprinted Membrane Produced by Electrospinning for β-Caryophyllene Extraction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7275. [PMID: 36295339 PMCID: PMC9610809 DOI: 10.3390/ma15207275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted membrane of β-caryophyllene (MIM-βCP) was fabricated incorporating β-caryophyllene molecularly imprinted polymer nanoparticles (βCP-NP) into polycaprolactone (PCL) fibers via electrospinning. The βCP-NP were synthesized by precipitation polymerization using the βCP as a template molecule and acrylic acid as a functional monomer in the proportion of 1:4 mol, respectively. Atomic force microscopy images and X-ray diffraction confirmed the nanoparticles' incorporation into MIM-βCP. MIM-βCP functionalization was evaluated by gas chromatography. The binding capacity was 1.80 ± 0.05 μmol/cm2, and the selectivity test was performed with a mixing solution of βCP and caryophyllene oxide, as an analog compound, that extracted 77% of the βCP in 5 min. The electrospun MIM-βCP can be used to detect and extract the βCP, applications in the molecular sieve, and biosensor production and may also contribute as an initial methodology to enhance versatile applications in the future, such as in the treatment of skin diseases, filters for extraction, and detection of βCP to prevent counterfeiting of commercial products, and smart clothing with insect-repellent properties.
Collapse
Affiliation(s)
| | - Maria Oneide Silva de Moraes
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
- Thematic Laboratory of Microscopy and Nanotechnology, National Institute of Amazonian Research, Manaus 69067-001, Brazil
| | - Walter Ricardo Brito
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Robert S. Matos
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe-UFS, São Cristóvão 49100-000, Brazil
| | - Marco Salerno
- Institute for Globally Distributed Open Research and Education (IGDORE), Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany
| | - Yonny Romaguera Barcelay
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
- BioMark@UC/CEB–LABBELS, Faculty of Sciences and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Karen Segala
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Federal University of Amazonas-UFAM, Manaus 69067-005, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| |
Collapse
|
12
|
Yu C, Song J, Yan Y, Gao J, Xing W, Meng M, Yan Y, Ma Z, Wu Y. A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Orbay S, Kocaturk O, Sanyal R, Sanyal A. Molecularly Imprinted Polymer-Coated Inorganic Nanoparticles: Fabrication and Biomedical Applications. MICROMACHINES 2022; 13:1464. [PMID: 36144087 PMCID: PMC9501141 DOI: 10.3390/mi13091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) continue to gain increasing attention as functional materials due to their unique characteristics such as higher stability, simple preparation, robustness, better binding capacity, and low cost. In particular, MIP-coated inorganic nanoparticles have emerged as a promising platform for various biomedical applications ranging from drug delivery to bioimaging. The integration of MIPs with inorganic nanomaterials such as silica (SiO2), iron oxide (Fe3O4), gold (Au), silver (Ag), and quantum dots (QDs) combines several attributes from both components to yield highly multifunctional materials. These materials with a multicomponent hierarchical structure composed of an inorganic core and an imprinted polymer shell exhibit enhanced properties and new functionalities. This review aims to provide a general overview of key recent advances in the fabrication of MIPs-coated inorganic nanoparticles and highlight their biomedical applications, including drug delivery, biosensor, bioimaging, and bioseparation.
Collapse
Affiliation(s)
- Sinem Orbay
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Rana Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
14
|
Bio-inspired design on EGCG-selective membrane: An anchoring/imprinting strategy based on bi-interactions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Pan W, Chen L, Wang Y, Yan Y. Selective separation of low concentration rare earths via coordination-induced ion imprinted electrospun membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|