1
|
Qiu Y, Wang C, Li R, Feng L, Yu S, Shen J, Ren LF, Shao J. Dual-ion permeation Janus membrane-assisted element reconstitution system enables fluorosilicate-oriented recovery from fluoride-rich and silica-rich wastewaters. WATER RESEARCH 2024; 268:122785. [PMID: 39550847 DOI: 10.1016/j.watres.2024.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Rapid development of semiconductor manufacturing and photovoltaic industry leads to significant generation of fluoride-rich and silica-rich wastewaters. Due to the emphasis on circular economy and resource recovery, there is a shift from regarding wastewater as waste to a recoverable resource. In this study, we present a uniquely designed dual-ion permeation Janus membrane (DPM)-assisted element reconstitution system (MERS) for selective recovery of high-value fluorosilicates from fluoride-rich and silica-rich wastewaters. The MERS with a configuration of cation-exchange membrane/bipolar membrane/DPM/anion-exchange membrane/cation-exchange membrane achieved HF formation in silica chamber and further SiF62- generation from the reaction of HF with SiO2. Driven by the electric field, SiF62- was then transported through DPM into acid chamber for fluorosilicates selective recovery. The DPM with positively-charged nanoporous substrate/negatively charged active layer enhanced electrostatic interaction for SiF62-/H+ transport and steric exclusion for coexisting foulants rejection. Ion transport mechanism analysis demonstrated DPM enhanced SiF62- migration while inhibiting back diffusion by electrostatic interaction and steric exclusion. Through the application of DPM, MERS showed rejections over 99 % for nanoparticles and over 90 % for organics. Thus, MERS stably selectively recovered SiF62- with recovery rate over 85 % and fluorosilicates purity over 99.5 %. Compared to traditional technologies, MERS achieved valuable resource recovery with the advantages of simple operation, small footprint and no secondary pollutant generation. Overall, this study provides a new strategy for simultaneous recovery of fluoride and silica from different waste streams, enabling a more sustainable strategy for semiconductor and photovoltaic industries development.
Collapse
Affiliation(s)
- Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ran Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lidong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuaijun Yu
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, Yunnan 671006, China.
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali, Yunnan 671006, China.
| |
Collapse
|
2
|
Yi Q, Qiu M, Sun X, Wu H, Huang Y, Xu H, Wang T, Nimmo W, Tang T, Shi L, Zeng H. Water-Assisted Programmable Assembly of Flexible and Self-Standing Janus Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305239. [PMID: 37875393 PMCID: PMC10724425 DOI: 10.1002/advs.202305239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Janus membranes with asymmetric wettability have been considered cutting-edge for energy/environmental-sustainable applications like water/fog harvester, breathable skin, and smart sensor; however, technical challenges in fabrication and accurate regulation of asymmetric wettability limit their development. Herein, by using water-assisted hydrogen-bonded (H-bonded) assembly of small molecules at water/oil interface, a facile strategy is proposed for one-step fabrication of membranes with well-regulable asymmetric wettability. Asymmetric orderly patterns, beneficial for mass transport based on abundant high-permeability sites and large surface area, are constructed on opposite membrane surfaces. Upon tuning water-assisted H-bonding via H-sites/configuration design and temperature/pH modulation, double-hydrophobic, double-hydrophilic, and hydrophobic-hydrophilic membranes are facilely fabricated. The Janus membranes show smart vapor-responsive curling and unidirectional water transport with promising flux of 1158±25 L m-2 h-1 under natural gravity and 31500±670 L·(m-2 h-1 bar-1 ) at negative pressure. This bottom-up approach offers a feasible-to-scalable avenue to precise-manipulation of Janus membranes for advanced applications, providing an effective pathway for developing tailor-made self-assembled nanomaterials.
Collapse
Affiliation(s)
- Qun Yi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Mingyue Qiu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Xiaoyu Sun
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Haonan Wu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Yi Huang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongxue Xu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Tielin Wang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - William Nimmo
- Energy Engineering GroupEnergy 2050University of SheffieldWestern BankSheffieldS3 7RDUK
| | - Tian Tang
- Department of Mechanical EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Lijuan Shi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| |
Collapse
|
3
|
Recent Advanced Development of Acid-Resistant Thin-Film Composite Nanofiltration Membrane Preparation and Separation Performance in Acidic Environments. SEPARATIONS 2022. [DOI: 10.3390/separations10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Membrane filtration technology has attracted extensive attention in academia and industry due to its advantages of eco-friendliness related to environmental protection and high efficiency. Polyamide thin-film composite nanofiltration (PA TFC NF) membranes have been widely used due to their high separation performance. Non-acid-resistant PA TFC NF membranes face tremendous challenges in an acidic environment. Novel and relatively acid-resistant polysulfonamide-based and triazine-based TFC NF membranes have been developed, but these have a serious trade-off in terms of permeability and selectivity. Hence, how to improve acid resistance of TFC NF membranes and their separation performance in acidic environments is a pivotal issue for the design and preparation of these membranes. This review first highlights current strategies for improving the acid resistance of PA TFC NF membranes by regulating the composition and structure of the separation layer of the membrane performed by manipulating and optimizing the construction method and then summarizes the separation performances of these acid-resistant TFC NF membranes in acidic environments, as studied in recent years.
Collapse
|