1
|
Aytaç E, Khanzada NK, Ibrahim Y, Khayet M, Hilal N. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. MEMBRANES 2024; 14:259. [PMID: 39728709 DOI: 10.3390/membranes14120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009. Thin-film composite (TFC) polymeric material has been the primary focus of RO membrane experts, with 550 articles published on this topic. The use of nanomaterials and polymers in membrane engineering is also high, with 821 articles. Common problems such as fouling, biofouling, and scaling have been the center of work dedication, with 324 articles published on these issues. Wang J. is the leader in the number of published articles (73), while Gao C. is the leader in other metrics. Journal of Membrane Science is the most preferred source for the publication of RO membrane engineering and related technologies. Author social networks analysis shows that there are five core clusters, and the dominant cluster have 4 researchers. The analysis of sentiment, subjectivity, and emotion indicates that abstracts are positively perceived, objectively written, and emotionally neutral.
Collapse
Affiliation(s)
- Ersin Aytaç
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye
| | - Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
- Chemical and Biomolecular Engineering Division, New York University, Brooklyn, NY 11201, USA
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com N° 2, 28805 Madrid, Spain
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Khanzada NK, Rehman S, Kharraz JA, Farid MU, Khatri M, Hilal N, An AK. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. CHEMOSPHERE 2023; 338:139557. [PMID: 37478994 DOI: 10.1016/j.chemosphere.2023.139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Lopez-Fernandez M, Tariq S, Naseem K, Ahmad A, Khan S, Younas U, Javed MS, Fan WS, Luque R, Ali S. Graphene based composite membranes for environmental toxicology remediation, critical approach towards environmental management. CHEMOSPHERE 2022; 307:136034. [PMID: 36029855 DOI: 10.1016/j.chemosphere.2022.136034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Graphene-based composite membranes, as laminated, stacked, and assembled architectures of graphene, have surpassed other conventional membranes with their advanced and preeminent structural specialization and potential use in a wide range of sustainable and environmental applications. The characteristic membrane features such as distinct laminar morphology, tailored physicochemical properties, as well as extraordinary molecular properties have fascinated scientists. Due to remarkable mechanical properties, these membranes can be easily fabricated. Recent progress has been achieved by graphene and its derivatives-based membranes to purify water and gases for environmental remediation. This review explained the latest and groundbreaking advances in chemical design, fabrication, and application of graphene-based membranes. Special attention is paid to the recent developments on graphene-based composites into membranes with various forms: free-standing, layered, and graphene-based nanocomposite membranes. Furthermore, a unique approach on environmental management with as-fabricated membranes is provided by discussing the effect of physicochemical properties. Consequently, their full-scale use for environmental management, water purification, gas purification, and biological treatments will pave the way for their promising features and realize their future prospects.
Collapse
Affiliation(s)
- Miriam Lopez-Fernandez
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain
| | - Sadaf Tariq
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Khalida Naseem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of central punjab, Lahore, Pakistan
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain
| | - Safia Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| | - Wong Siew Fan
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology & Innovation, 57000, Kuala Lumpur, Malaysia
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Shafaqat Ali
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Zhang X, Choi PJ, Khanzada NK, Sun J, Wong PW, Guo J, Ling L, Wu D, Jang A, An AK. FO membrane fabricated by layer-by-layer interfacial polymerisation and grafted sulfonamide group for improving chlorine resistance and water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|