1
|
Yousaf MU, Madeo Cortarelli L, Jebet NI, Unrine JM, Aich N, Tsyusko OV, Escobar IC. Characterization, Performance, and Toxicological Assessment of Polysulfone-Sulfonated Polyether Ether Ketone Membranes for Water Separation Applications. MEMBRANES 2025; 15:87. [PMID: 40137039 PMCID: PMC11943734 DOI: 10.3390/membranes15030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
The removal of small molecular weight charged compounds from aqueous solutions using membrane remains a challenge. In this study, polysulfone (PSf)- and sulfonated polyether ether ketone (SPEEK)-based membranes were fabricated via non-solvent induced phase separation process (NIPS) using N-Methyl-2-Pyrrolidone (NMP) as solvent and water as non-solvent. Membranes were characterized structurally and morphologically, followed by toxicity assessment conducted before and after filtration, both with and without annealing at various pH values to evaluate potential leaching of trapped solvent from the membrane pores. Additionally, membrane performance was characterized using binary mixtures of cationic and anionic dyes. The results demonstrated selective filtration behavior, with cationic dyes being preferentially rejected due to size exclusion and electrostatic interactions. Additionally, a key focus of this work was the investigation of solvent leaching, framed within a Safe(r)-by-Design (SbD) approach aimed at enhancing functional performance while minimizing environmental toxicity. Toxicity assessments using a model organism, a nematode Caenorhabditis elegans, revealed that annealing reduced solvent leaching and thus permeate toxicity, particularly at neutral pH values, by facilitating trapped solvent release prior to membrane use. These findings provide insights for the importance of including an SbD approach during membrane casting to fabricate membranes with desirable properties while minimizing toxicity.
Collapse
Affiliation(s)
- Muhammad Usman Yousaf
- Department of Chemical and Materials Engineering, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Lucca Madeo Cortarelli
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (L.M.C.); (J.M.U.)
| | - Nerissa I. Jebet
- Department of Health and Clinical Sciences, College of Health Sciences, University of Kentucky, Lexington, KY 40506, USA;
| | - Jason M. Unrine
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (L.M.C.); (J.M.U.)
- Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, USA
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, College of Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588, USA;
| | - Olga V. Tsyusko
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (L.M.C.); (J.M.U.)
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
2
|
Li Z, Zhen H, Jia Y, Xiao W, Li X, Wu X, Li T, He G, Jiang X. Polyelectrolyte fabricated nanofiltration membrane with heterogeneously charged channels for high efficient cephalexin wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136356. [PMID: 39504773 DOI: 10.1016/j.jhazmat.2024.136356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Nanofiltration (NF) for treatments of pharmaceutical wastewater is a promising direction for water protection and resources recovery. Herein, a novel membrane with heterogeneously charged channels was constructed by modified layer-by-layer assembly methods. Within the well-designed pores, the polyanion structure excludes the cephalexin and the cationic structure slows down its diffusion, thereby rejections for cephalexin are improved. The hydrophilic property of polyelectrolytes simultaneously guarantees the water transport. Fabricated heterogeneously charged channels are shown to strengthen the electrostatic barrier and prevent monovalent cephalexin anions penetration. Optimized nanofiltration membrane exhibits rejections of 98.9 % for 3650 ppm cephalexin, maintaining steady rejection during 69 h of continuous operations. The flux recovers to 99.3 % of the original flux after water washing. Benefiting from the separation performance of fabricated membranes, multi-stage NF processes effectively enrich the cephalexin wastewater. This work offers significant prospects for achieving high-efficiency pharmaceutical wastewater treatment and amphoteric drug recovery.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Huange Zhen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuandong Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
3
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
4
|
Zhen H, Wu M, Yuan Z, Qi Z, Meng Y, Zu X, Liu D, He G, Jiang X. Nanofiltration membrane with CM-β-CD tailored polyamide layer for high concentration cephalexin solution separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Recent Advanced Development of Acid-Resistant Thin-Film Composite Nanofiltration Membrane Preparation and Separation Performance in Acidic Environments. SEPARATIONS 2022. [DOI: 10.3390/separations10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Membrane filtration technology has attracted extensive attention in academia and industry due to its advantages of eco-friendliness related to environmental protection and high efficiency. Polyamide thin-film composite nanofiltration (PA TFC NF) membranes have been widely used due to their high separation performance. Non-acid-resistant PA TFC NF membranes face tremendous challenges in an acidic environment. Novel and relatively acid-resistant polysulfonamide-based and triazine-based TFC NF membranes have been developed, but these have a serious trade-off in terms of permeability and selectivity. Hence, how to improve acid resistance of TFC NF membranes and their separation performance in acidic environments is a pivotal issue for the design and preparation of these membranes. This review first highlights current strategies for improving the acid resistance of PA TFC NF membranes by regulating the composition and structure of the separation layer of the membrane performed by manipulating and optimizing the construction method and then summarizes the separation performances of these acid-resistant TFC NF membranes in acidic environments, as studied in recent years.
Collapse
|
6
|
Ren Y, Qi P, Wan Y, Chen C, Chen X, Feng S, Luo J. Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18018-18029. [PMID: 36445263 DOI: 10.1021/acs.est.2c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO42-), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel "etching-swelling-planting" strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO42- ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (-OH and -COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.
Collapse
Affiliation(s)
- Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Pengfei Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou341119, China
| | - Chulong Chen
- ZheJiang MEY Membrane Technology Co., Ltd., Hangzhou310012, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
7
|
Puhan MR, Sutariya B, Karan S. Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zhang L, Liu Y, Zeng G, Yang Z, Lin Q, Wang Y, Wang X, Pu S. Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Finely regulated polyamide membranes with rapid water transport for low-pressure precise nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang K, Ren Y, Luo J, Zhuang Y, Feng S, Wan Y. Highly Stable Silver-Loaded Membrane Prepared by Interfacial Polymerization for Olefin Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keying Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Zhuang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| |
Collapse
|
11
|
Zhao Z, Feng S, Xiao C, Luo J, Song W, Wan Y, Li S. Exploring ions selectivity of nanofiltration membranes for rare earth wastewater treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Highly Selective and pH-Stable Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. MEMBRANES 2022; 12:membranes12020156. [PMID: 35207077 PMCID: PMC8874617 DOI: 10.3390/membranes12020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
Ultrathin and smooth polyamide (PA) reverse osmosis (RO) membranes have attracted significant interest due to their potential advantages of high permeance and low fouling propensity. Although a layered interfacial polymerization (LIP) technique aided by the insertion of a polyelectrolyte interlayer has proven effective in fabricating ultrathin and uniform membranes, the RO performance and pH stability of the fabricated LIP membrane remain inadequate. In this study, a poly(piperazineamide) (PIPA) layer prepared via interfacial polymerization (IP) was employed as an interlayer to overcome the limitations of the prototype LIP method. Similar to the control polyelectrolyte-interlayered LIP membrane, the PIPA-interlayered LIP (pLIP) membrane had a much thinner (~20 nm) and smoother selective layer than the membrane fabricated via conventional IP due to the highly surface-confined and uniform LIP reaction. The pLIP membrane also exhibited RO performance exceeding that of the control LIP and conventional IP-assembled membranes, by enabling denser monomer deposition and a more confined interfacial reaction. Importantly, the chemically crosslinked PIPA interlayer endowed the pLIP membrane with higher pH stability than the control polyelectrolyte interlayer. The proposed strategy enables the fabrication of high-performance and pH-stable PA membranes using hydrophilic supports, which can be applied to other separation processes, including osmosis-driven separation and organic solvent filtration.
Collapse
|