1
|
Hundessa NK, Hu CC, Kang DY, Ajebe EG, Habet BA, Hung WS, Lee KR, Lai JY. A novel trimesoyl chloride/hyper branched polyethyleneimine/MOF (MIL-303)/P84 co-polyimide nanocomposite mixed matrix membranes with an ultra-thin surface cross linking layer for removing toxic heavy metal ions from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136221. [PMID: 39442308 DOI: 10.1016/j.jhazmat.2024.136221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
In this study, a positively charged nanofiltration (NF) nanocomposite mixed matrix membrane (MMM) was developed by incorporating metal-organic frameworks (MOFs) (MIL-303) into P84 co-polyimide and cross-linking with hyperbranched polyethyleneimine (HPEI). A very thin selective layer was subsequently formed on the cross-linked membrane surface using trimesoyl chloride (TMC). The incorporation of MIL-303 introduced specific water channels, enhancing the permeance of the nanocomposite MMMs. Additionally, it improved hydrophilicity and influenced the diffusion of the TMC monomer through the channels. The cross-linker HPEI resulted in NF membranes with increased electro-positivity and a reduced mean pore diameter. The very thin crosslinked TMC layer further improved permeance and heavy metal ions rejection of the membrane. This optimized membrane exhibited excellent rejection for both bivalent and monovalent ions, as well as heavy metal ions, effectively overcoming the common trade-off between permeance and rejection in NF membranes. The membrane demonstrated a remarkable permeance of 13.0 LMH/bar, coupled with exceptional rejection for heavy metal ions (96.8 % for Zn²⁺, 95.2 % for Ni²⁺, 95.7 % for Cu²⁺, 93.2 % for Pb²⁺, and 92.9 % for Cd²⁺). The TMC/HPEI/MIL-303/P84 system presented in this study holds significant promise for customizing high-performance positively charged NF membranes for the removal of heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Netsanet Kebede Hundessa
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan.
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Eyasu Gebrie Ajebe
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Biadglign Ayalneh Habet
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan University, Chung-Li 32023, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| |
Collapse
|
2
|
Sahu LR, Yadav D, Borah D, Gogoi A, Goswami S, Hazarika G, Karki S, Borpatra Gohain M, Sawake SV, Jadhav SV, Chatterjee S, Ingole PG. Polymeric Membranes for Liquid Separation: Innovations in Materials, Fabrication, and Industrial Applications. Polymers (Basel) 2024; 16:3240. [PMID: 39683985 DOI: 10.3390/polym16233240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Polymeric membranes have emerged as a versatile and efficient liquid separation technology, addressing the growing demand for sustainable, high-performance separation processes in various industrial sectors. This review offers an in-depth analysis of recent developments in polymeric membrane technology, focusing on materials' advancements, innovative fabrication methods, and strategies for improving performance. We discuss the underlying principles of membrane separation, selecting suitable polymers, and integrating novel materials, such as mixed-matrix and composite membranes, to enhance selectivity, permeability, and antifouling properties. The article also highlights the challenges and limitations associated with polymeric membranes, including stability, fouling, and scalability, and explores potential solutions to overcome these obstacles. This review aims to guide the development of next-generation polymeric membranes for efficient and sustainable liquid separation by offering a detailed analysis of current research and future directions.
Collapse
Affiliation(s)
- Lalit Ranjan Sahu
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Debasish Borah
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Anuranjit Gogoi
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Subrata Goswami
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh V Sawake
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Sumit V Jadhav
- Government Polytechnic, Hol Tarfe Haveli, Nandurbar 425412, Maharashtra, India
| | - Soumya Chatterjee
- Defence Research Laboratory, Defence Research and Development Organisation (DRDO), Tezpur 784001, Assam, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-NorthEast Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
4
|
Zhao Z, Di N, Zha Z, Wang J, Wang Z, Zhao S. Positively Charged Polyamine Nanofiltration Membrane for Precise Ion-Ion Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48695-48704. [PMID: 37796665 DOI: 10.1021/acsami.3c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Positively charged nanofiltration (NF) membranes offer enormous potential for lithium-magnesium separation, hard water softening, and heavy metal removal. However, fundamental performance limitations for these applications exist in conventional polyamide-based NF membranes due to the negatively charged surface and low ion-ion selectivity. We hereby innovatively develop an advanced positively charged polyamine-based NF membrane built by the nucleophilic substitution of bromine and amine groups for precise ion-ion separation. Specifically, polyethylenimine (PEI) and 1,3,5-tris(bromomethyl)benzene (TBB) are interfacially polymerized to generate an amine-linked PEI-TBB selective layer with an ultrathin thickness of ∼95 nm, an effective pore size of 6.5 Å, and a strong positively charged surface with a zeta potential of +20.9 mV at pH 7. The PEI-TBB composite membrane achieves a water permeance of 4.2 L·m-2·h-1·bar-1, various divalent salt rejections above 90%, and separation factors above 15 for NaCl/MgCl2 and LiCl/MgCl2 mixed solutions. A three-stage NF process is implemented to achieve a Mg2+/Li+ mass ratio sharply decreasing from 50 to 0.11 with a total separation factor (SLi,Mg) of 455. Furthermore, the polyamine-based NF membrane exhibits excellent operational stability under continuous filtration and high operational pressure, demonstrating great application potential for precise ion-ion separation.
Collapse
Affiliation(s)
- Zhenyi Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Nanxi Di
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhiyuan Zha
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jixiao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Song Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Covaliu-Mierlă CI, Păunescu O, Iovu H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. MEMBRANES 2023; 13:643. [PMID: 37505009 PMCID: PMC10385156 DOI: 10.3390/membranes13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania
| |
Collapse
|
6
|
Esquivel-Castro TA, Oliva J, Rodríguez-González V, Rosu HC. Immobilized mesoporous materials for carvacrol delivery to the germination and early growth of tomato plants (Solanum Lycopersicum). ENVIRONMENTAL RESEARCH 2023; 228:115860. [PMID: 37030405 DOI: 10.1016/j.envres.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023]
Abstract
The immobilization of TiO2-SiO2 (TSO) materials on seed mats stands as a practical way to help the germination and early growth of tomato plants (Solanum Lycopersicum). Mesoporous materials are functionalized with triethanolamine (TEA) and loaded with the biocide molecule of carvacrol (CAR). The effect of CAR on the parameters of germination percentage, germination time, root, shoot length, and chlorophyll content of seeds and/or tomato seedlings are investigated. The germination experiments were carried out using seed mats coated with the TSO materials, also TSO powdered materials were put directly on the tomato seeds to study their effect on germination. Direct deposition of TSO composites achieved the complete germination and longer shoots due to the cooperative interactions among nanomaterials, carvacrol, and the tomato seed. However, the handling of the seeds and the detrimental effect of powder in the germination system made difficult the application with agricultural purposes. The plastic seed mats provide a practical system with lower germination, but more homogenous growth of root/shoot is possible. Surprisingly, in this methodology the carvacrol presents a detrimental effect on germination due to less interaction with the seeds. The handling of seeds and recover of the nanomaterials and its reuse are advantages of the plastic seed mats, which together with less wastage of seeds suggest a potential use in agriculture. The as-synthetized TSO NPs, together with the functionalization of triethanolamine and carvacrol used to promote the health germination of the seeds, allows the control of the time for seed germination, germination %, and length for the root/shoot of seed tomato germination. The immobilization of mesoporous materials results in an alternative to help the germination and early growth of agricultural plants searching to avoid the lixiviation of nanomaterials to the environment.
Collapse
Affiliation(s)
- Tzipatly A Esquivel-Castro
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí, SLP, Mexico
| | - Jorge Oliva
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí, SLP, Mexico
| | - Vicente Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí, SLP, Mexico.
| | - Haret C Rosu
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la presa San José 2055, Col. Lomas 4a sección, 78216, San Luis Potosí, SLP, Mexico
| |
Collapse
|
7
|
Su W, Liu L, Chen Y, Cui J, Zhao X. Preparation of thin-film composite membrane with Turing structure by PEO-assisted interfacial polymerization combined with choline chloride modification to improve permeability. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Improving Mg2+/Li+ separation performance of polyamide nanofiltration membrane by swelling-embedding-shrinking strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Yan L, Yang X, Zeng H, Zhao Y, Li Y, He X, Ma J, Shao L. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
11
|
Gao Q, Zhu Q, Zheng J, Yuan S, Wang Y, Zhao R, Liu Y, Gui X, Wang C, Volodine A, Jin P, Van der Bruggen B. Positively charged membranes for dye/salt separation based on a crossover combination of Mannich reaction and prebiotic chemistry. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129744. [PMID: 35969956 DOI: 10.1016/j.jhazmat.2022.129744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
With the advent of increasingly loose nanofiltration membranes for dye desalination, synthesis methods based on interfacial polymerization and bio-inspired materials such as polydopamine (pDA) have been investigated. However, the long polymerization time of pDA greatly limits the synthesis and application of fast dye/salt separation membranes. In this work, prebiotic chemistry-inspired aminomalononitrile (AMN) was used as a binder to co-deposit the Mannich reaction of tetrakis(hydroxymethyl)phosphonium chloride (THPC) and polyethyleneimine (PEI) to form the positively charged selective layer rapidly. The optimum membrane had a water permeance of 30.7 LMH bar-1 and a rejection of positively charged Victoria blue B (VBB, 200 ppm) and Na2SO4 (1 g/L) of 99.5 % and 9.9 %, respectively. Moreover, the results of a practical application test showed that it had excellent separation performance towards various positively charged dyes and salts. In addition, the actual application test results show that the membrane has good long-term stability during application. In terms of antifouling and antibacterial, the membrane has excellent antibacterial and antifouling properties., Further antibacterial tests were carried out, and the inactivation effect of the membrane on E. coli was also confirmed. The preparation method proposed in this work provides technical support for developing new dye/salt separation membranes.
Collapse
Affiliation(s)
- Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; National Engineering Research Centre of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Qingjuan Zhu
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yue Wang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yanyan Liu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xiahui Gui
- National Engineering Research Centre of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Chunhua Wang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Alexander Volodine
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
12
|
Zhang X, Li F, Liu M, Zhu C, Zhao X. Positively charged modification of commercial nanofiltration membrane to enhance the separation of mono−/divalent cation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Zhang
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing China
| | - Fuzhi Li
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing China
| | - Mingqiao Liu
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing China
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering Beijing University of Chemical Technology Beijing China
| | - Chenyu Zhu
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing China
| | - Xuan Zhao
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing China
| |
Collapse
|
13
|
Yadav S, Ibrar I, Altaee A, Samal AK, Zhou J. Surface modification of nanofiltration membrane with kappa-carrageenan/graphene oxide for leachate wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Zhu M, Chao Z, Yang H, Xu Z, Cheng C. Improved dye and heavy metal ions removal in saline solutions by electric field-assisted gravity driven filtration using nanofiber membranes with asymmetric micro/nano channels. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|