1
|
Chen N, Hu C, Lee YM. Poly(Aryl- co-Aryl Piperidinium) Copolymers for Anion Exchange Membrane Fuel Cells and Water Electrolyzers. Acc Chem Res 2025; 58:688-702. [PMID: 39930735 PMCID: PMC11883724 DOI: 10.1021/acs.accounts.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Next-generation cost-effective anion exchange membrane (AEM) fuel cells (AEMFCs) and AEM water electrolyzers (AEMWEs) have emerged as promising alternatives to costly proton exchange membrane (PEM) fuel cells and water electrolyzers due to the possibility of utilizing platinum-group-metal (PGM)-free catalysts and phasing out unsustainable perfluorosulfonic acid polymers. Anion exchange polyelectrolytes (AEPs), which can be utilized as AEMs or ionomers, are pivotal materials in AEM devices. Despite extensive exploration in the past decade, the application of AEPs has been significantly impeded by their poor ionic conductivity, insufficient alkaline stability, and unfavorable mechanical properties. Therefore, developing highly conductive and robust AEPs is critical to the success of AEMFCs and AEMWEs. (i) Our group has developed a series of highly conductive and durable poly(aryl-co-aryl piperidinium) (c-PAP) AEPs to address the aforementioned issues. c-PAP AEMs and ionomers enable outstanding OH- conductivity (>160 mS cm-1 at 80 °C), alkaline stability (1 M NaOH at 80 °C > 2000 h), dimensional stability, and mechanical properties (tensile strength > 80 MPa), giving them all the properties required for applications in AEM devices. (ii) Based on c-PAP AEMs and ionomers, we have developed high-performance AEMFCs and AEMWEs, as well as provided insights into the ionomer research and the design of membrane electrode assemblies. Typically, c-PAP AEMFCs reached the topmost peak power densities (PPDs) of 2.7 W cm-2 at 80 °C in H2-O2 along with 1000 h cell durability. Moreover, cathode-dried AEMWEs achieved a record-breaking current density of 17 A cm-2 in 1 M KOH, and the cell can be run stably at a 1.5 A cm-2 current density for over 2000 h. The remarkable performances achieved by this new class of c-PAP AEPs identify them as the most promising candidates for practical applications in AEMFCs and AEMWEs. In this account, we will elaborate on our strategies and methodologies associated with c-PAP AEPs and AEM devices, covering the screening and identification of highly durable cation head groups and molecular-engineering approaches to design c-PAP AEMs and ionomers. Moreover, we underscore our strategy in terms of developing highly efficient and durable AEMFCs and AEMWEs. We also elucidate different approaches for further enhancing the ion conductivity and mechanical stability of c-PAP AEMs, including the design of backbones and side chains, cross-linking, and reinforcement. We firmly believe that our series of studies has made substantial contributions to the fields of AEM, ionomers, AEMFCs, and AEMWEs, which have advanced AEM technology to be on par with PEM technology, opening a new avenue for commercialization of AEMFCs and AEMWEs.
Collapse
Affiliation(s)
- Nanjun Chen
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Chuan Hu
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
- School
of Energy and Environment, Southeast University, Nanjing 210018, China
| | - Young Moo Lee
- Department
of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic
of Korea
| |
Collapse
|
2
|
Kim H, Jeon S, Choi J, Park YS, Park SJ, Lee MS, Nam Y, Park H, Kim M, Lee C, An SE, Jung J, Kim S, Kim JF, Cho HS, Lee AS, Lee JH. Interfacially Assembled Anion Exchange Membranes for Water Electrolysis. ACS NANO 2024; 18:32694-32704. [PMID: 39541159 DOI: 10.1021/acsnano.4c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm-2 at 1.8 V) and AEMWE (5.23 A cm-2 at 1.8 V) performance at 5 wt % KOH and 80 °C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.
Collapse
Affiliation(s)
- Hansoo Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungkwon Jeon
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea
| | - Juyeon Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Sang Park
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sung-Joon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myung-Seok Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yujin Nam
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hosik Park
- Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Si Eon An
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiyoon Jung
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - SeungHwan Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong F Kim
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyun-Seok Cho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Albert S Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Hu C, Kang NY, Kang HW, Lee JY, Zhang X, Lee YJ, Jung SW, Park JH, Kim MG, Yoo SJ, Lee SY, Park CH, Lee YM. Triptycene Branched Poly(aryl-co-aryl piperidinium) Electrolytes for Alkaline Anion Exchange Membrane Fuel Cells and Water Electrolyzers. Angew Chem Int Ed Engl 2024; 63:e202316697. [PMID: 38063325 DOI: 10.1002/anie.202316697] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 01/10/2024]
Abstract
Alkaline polymer electrolytes (APEs) are essential materials for alkaline energy conversion devices such as anion exchange membrane fuel cells (AEMFCs) and water electrolyzers (AEMWEs). Here, we report a series of branched poly(aryl-co-aryl piperidinium) with different branching agents (triptycene: highly-rigid, three-dimensional structure; triphenylbenzene: planar, two-dimensional structure) for high-performance APEs. Among them, triptycene branched APEs showed excellent hydroxide conductivity (193.5 mS cm-1 @80 °C), alkaline stability, mechanical properties, and dimensional stability due to the formation of branched network structures, and increased free volume. AEMFCs based on triptycene-branched APEs reached promising peak power densities of 2.503 and 1.705 W cm-2 at 75/100 % and 30/30 % (anode/cathode) relative humidity, respectively. In addition, the fuel cells can run stably at a current density of 0.6 A cm-2 for 500 h with a low voltage decay rate of 46 μV h-1 . Importantly, the related AEMWE achieved unprecedented current densities of 16 A cm-2 and 14.17 A cm-2 (@2 V, 80 °C, 1 M NaOH) using precious and non-precious metal catalysts, respectively. Moreover, the AEMWE can be stably operated under 1.5 A cm-2 at 60 °C for 2000 h. The excellent results suggest that the triptycene-branched APEs are promising candidates for future AEMFC and AEMWE applications.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Na Yoon Kang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun Woo Kang
- Department of Energy Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Ju Yeon Lee
- Hydrogen⋅Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Xiaohua Zhang
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong Jun Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Won Jung
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Hyeong Park
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myeong-Geun Kim
- Hydrogen⋅Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen⋅Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of. Korea
| | - So Young Lee
- Hydrogen⋅Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chi Hoon Park
- Department of Energy Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
5
|
Li F, Chan SH, Tu Z. Recent Development of Anion Exchange Membrane Fuel Cells and Performance Optimization Strategies: A Review. CHEM REC 2024; 24:e202300067. [PMID: 37350372 DOI: 10.1002/tcr.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Indexed: 06/24/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are the most promising low-temperature fuel cells and have received extensive attention. Compared to PEMFCs, the cost per unit of power can be significantly reduced for AEMFCs because, in theory, they allow the usage of non-precious metal catalysts and low-cost cell components. Owing to the development of advanced materials and performance improvement strategies, AEMFCs have achieved new records in both initial performance and durability. However, the high performance currently achieved is contingent on certain conditions, e. g., high Pt loading, large gas flowrates, and operation in pure O2 , which are far from practical applications. Therefore, the transition to commercially relevant performance and durability is the next goal of AEMFCs. This paper reviews the performance data of H2 -fueled AEMFCs since 2010 and summarizes possible performance optimization schemes, which can provide useful insights for developing next-generation AEMFCs.
Collapse
Affiliation(s)
- Fangju Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siew Hwa Chan
- Energy Research Institute, Nanyang Technological University, 50 Nanyang Avenue, 637553, Singapore
| | - Zhengkai Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Yu Z, Gao WT, Liu YJ, Zhang QG, Zhu AM, Liu QL. Fluorinated poly(p-triphenyl piperidine) anion exchange membranes with robust dimensional stability for fuel cells. J Colloid Interface Sci 2023; 651:404-414. [PMID: 37549525 DOI: 10.1016/j.jcis.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which are more economical than proton exchange membrane fuel cells (PEMFCs), stand out in the context of the rapid development of renewable energy. Superacid-catalyzed ether-free aromatic polymers have recently received a lot of attention due to their exceptional performance, but their development has been hampered by the trade-off between the dimensional stability and ionic conductivity of anion exchange membranes (AEMs). Here, we introduced fluoroketones containing different numbers of fluorinated groups (x = 0, 3 and 6) in the main chain of p-terphenyl piperidine because of the favorable hydrophobic properties of fluorinated groups. The results show that fluorinated AEMs can enhance OH- conductivity by building more aggregated hydrophilic channels while ensuring dimensional stability. The PTF6-QAPTP AEM with more fluorinated groups has the most excellent performance at 80 °C with an OH- conductivity of 142.7 mS cm-1 and a swelling ratio (SR) of only 4.55 %. Additionally, it exhibits good alkali durability, with the OH- conductivity and quaternary ammonium (QA) cation retaining at 93.45% and 92.6%, respectively, after immersion in a 2 M NaOH solution at 80 °C for 1200 h. In addition, the power density of the PTF6-QAPTP based single cell reaches 849 mW cm-2 when the current density is 1600 mA cm-2. The PTF6-QAPTP based cell has a voltage retention of 88% after 80 h of stability testing at a constant current density of 300 mA cm-2 at 80 °C.
Collapse
Affiliation(s)
- Ze Yu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ying Jie Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
7
|
Chen H, Bang KT, Tian Y, Hu C, Tao R, Yuan Y, Wang R, Shin DM, Shao M, Lee YM, Kim Y. Poly(Ethylene Piperidinium)s for Anion Exchange Membranes. Angew Chem Int Ed Engl 2023; 62:e202307690. [PMID: 37524652 DOI: 10.1002/anie.202307690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications. To improve the performance, we introduced ionic crosslinking into high-cationic-ratio AEMs to suppress high water uptake and swelling while further improving the hydroxide conductivity. Remarkably, PEP80-20PS achieved a hydroxide conductivity of 354.3 mS cm-1 at 80 °C while remaining mechanically stable. Compared with the base polymer PEP80, the water uptake of PEP80-20PS decreased by 69 % from 813 % to 350 %, and the swelling decreased substantially by 85 % from 350.0 % to 50.2 % at 80 °C. PEP80-20PS also showed excellent alkaline stability, 84.7 % remained after 35 days of treatment with an aqueous KOH solution. The chemical design in this study represents a significant advancement toward the development of simultaneously highly stable and conductive AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ran Tao
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
8
|
Guo M, Ban T, Wang Y, Wang Y, Zhang Y, Zhang J, Zhu X. Exploring highly soluble ether-free polybenzimidazole as anion exchange membranes with long term durability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|