1
|
Seling TR, Songsart-Power M, Shringi AK, Paudyal J, Yan F, Limbu TB. Ti 3C 2T x MXene-Based Hybrid Photocatalysts in Organic Dye Degradation: A Review. Molecules 2025; 30:1463. [PMID: 40286046 PMCID: PMC11990510 DOI: 10.3390/molecules30071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides an overview of the fabrication methods for Ti3C2Tx MXene-based hybrid photocatalysts and evaluates their role in degrading organic dye pollutants. Ti3C2Tx MXene has emerged as a promising material for hybrid photocatalysts due to its high metallic conductivity, excellent hydrophilicity, strong molecular adsorption, and efficient charge transfer. These properties facilitate faster charge separation and minimize electron-hole recombination, leading to exceptional photodegradation performance, long-term stability, and significant attention in dye degradation applications. Ti3C2Tx MXene-based hybrid photocatalysts significantly improve dye degradation efficiency, as evidenced by higher percentage degradation and reduced degradation time compared to conventional semiconducting materials. This review also highlights computational techniques employed to assess and enhance the performance of Ti3C2Tx MXene-based hybrid photocatalysts for dye degradation. It identifies the challenges associated with Ti3C2Tx MXene-based hybrid photocatalyst research and proposes potential solutions, outlining future research directions to address these obstacles effectively.
Collapse
Affiliation(s)
- Tank R. Seling
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Mackenzie Songsart-Power
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA;
| | - Amit Kumar Shringi
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Janak Paudyal
- Department of Chemistry and Physics, McNeese State University, Lake Charles, LA 70605, USA;
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (T.R.S.); (A.K.S.)
| | - Tej B. Limbu
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA;
| |
Collapse
|
2
|
Chen C, Wang B, Xu J, Fei L, Raza S, Li B, Zeng Q, Shen L, Lin H. Recent Advancement in Emerging MXene-Based Photocatalytic Membrane for Revolutionizing Wastewater Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311427. [PMID: 38733219 DOI: 10.1002/smll.202311427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Indexed: 05/13/2024]
Abstract
MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Saleem Raza
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
Zhu F, Zhan Y, Chen X, Chen Y, Lei Y, Jia H, Li Y, Duan X. Photocatalytic PAN Nanofibrous Membrane through Anchoring a Nanoflower-Branched CoAl-LDH@PANI Heterojunction for Organic Hazards Degradation and Oil-Containing Emulsified Wastewater Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14368-14383. [PMID: 38954527 DOI: 10.1021/acs.langmuir.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The synergistic treatment of oily wastewater containing organic hazards and emulsified oils remains a big challenge for membrane separation technology. Herein, the photocatalytic membrane, which combined the physical barrier and catalytic oxidation-driven degradation functionality, was fabricated via anchoring a nanoflower-branched CoAl-LDH@PANI Z-scheme heterojunction onto a porous polyacrylonitrile mat and using tannic acid as an adhesive. The assembly of such a Z-scheme heterojunction offered the superior photocatalytic degradation performance of soluble dyes and tetracycline (up to 94.3%) to the membrane with the improved photocatalytic activity of 2.33 times compared with the CoAl-LDH@pPAN membrane. Quenching experiments suggested that the •O2- was the most reactive oxygen species in the catalytic reaction system of the composite membrane. The greatly enhanced photocatalytic activity was attributed to the effective inhibition of photogenerated hole-electron combination using PANI as a carrier, with charge transferring from LDH to PANI. The possible photocatalytic degradation mechanism was proposed based on VB-XPS, electron spin resonance spectroscopy, and DRS technologies, which was confirmed by density functional theory calculation. Meanwhile, benefiting from the superhydrophilic/oleophobic feature and low oil adhesion, the membrane exhibited high permeability for isooctane emulsion (3990.39 L·m-2·h-1), high structure stability, and satisfactory cycling performance. This work provided a strategy to develop superwetting and photocatalytic composite membranes for treating complex multicomponent pollutants in the chemical industry.
Collapse
Affiliation(s)
- Fei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, P R China
| | - Ximin Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yiwen Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yajie Lei
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P R China
| | - Hongshan Jia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Yinlong Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| | - Xinyue Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, P R China
| |
Collapse
|
4
|
Zhang L, Zhao L, Tan Y, Gong X, Zhu M, Liu Y, Liu Y. Ultra-high flux mesh membranes coated with tannic acid-ZIF-8@MXene composites for efficient oil-water separation. ENVIRONMENTAL RESEARCH 2024; 248:118264. [PMID: 38266894 DOI: 10.1016/j.envres.2024.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Oil/water separation has become a global concern due to the increasing discharge of multi-component harmful oily wastewater. Super wetting membranes have been shown to be an effective material for oil/water separation. Ultra-high flux stainless-steel meshes (SSM) with superhydrophilicity and underwater superoleophobicity were fabricated by tannic acid (TA) modified ZIF-8 nanoparticles (TZIF-8) and two-dimensional MXene materials for oil/water separation. The TZIF-8 increased the interlayer space of MXene, enhancing the flux permeation (69,093 L m-2h-1) and rejection of the composite membrane (TZIF-8@MXene/SSM). The TZIF-8@MXene/SSM membrane showed an underwater oil contact angle of 154.2°. The membrane maintained underwater superoleophobic after stability and durability tests, including various pH solutions, organic solvents, reusability, etc. In addition, the oil/water separation efficiency of TZIF-8@MXene/SSM membranes was higher than 99% after treatment in harsh conditions and recycling. The outstanding anti-fouling, stability, durability, and recyclability properties of TZIF-8@MXene/SSM membrane highlight the remarkable potential of membranes for complex oil/water separation process.
Collapse
Affiliation(s)
- Lingrui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Yating Tan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610068, China.
| | - Meng Zhu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yong Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610068, China
| | - Yucheng Liu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| |
Collapse
|
5
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
6
|
Feng Z, Liu C, Tang B, Yang X, Jiang W, Wang P, Tang X, Wang H, Zeng X, Zeng G. Construction of a Two-Dimensional GO/Ti 3C 2T X Composite Membrane and Investigation of Mg 2+/Li + Separation Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2777. [PMID: 37887928 PMCID: PMC10609999 DOI: 10.3390/nano13202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Graphene oxide (GO) two-dimensional (2D) membranes with unique layer structures and tunable layer spacing have special advantages and great potential in the field of water treatment. However, GO membranes face the issues of weak anti-swelling ability as well as poor permeability. We prepared GO/Ti3C2TX 2D composite membranes with 2D/2D structures by intercalating Ti3C2TX nanosheets with slightly smaller sizes into GO membranes. Ti3C2TX intercalation can effectively expand the layer spacing of GO, thereby substantially enhancing the flux of the composite membrane (2.82 to 6.35 L·m-2·h-1). Moreover, the GO/Ti3C2TX composite membrane exhibited a good Mg2+/Li+ separation capability. For the simulated brine, the separation factor of M2 was 3.81, and the salt solution flux was as high as 5.26 L·m-2·h-1. Meanwhile, the incorporation of Ti3C2TX nanosheets significantly improved the stability of GO/Ti3C2TX membranes in different pH environments. This study provides a unique insight into the preparation of highly permeable and ion-selective GO membranes.
Collapse
Affiliation(s)
- Zhenhua Feng
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Chengwen Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Binbin Tang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Xiaojun Yang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Wenjie Jiang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Peng Wang
- Sichuan Salt Geology Drilling Team (Sichuan Mineral Salt Mining Engineering Technology Research Center), Zigong 643000, China; (P.W.); (X.T.)
| | - Xianjun Tang
- Sichuan Salt Geology Drilling Team (Sichuan Mineral Salt Mining Engineering Technology Research Center), Zigong 643000, China; (P.W.); (X.T.)
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Xiangdong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| |
Collapse
|
7
|
Cheng X, Qin X, Su Z, Gou X, Yang Z, Wang H. Research on the Antibacterial Properties of MXene-Based 2D-2D Composite Materials Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2121. [PMID: 37513132 PMCID: PMC10383113 DOI: 10.3390/nano13142121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Novel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-C3N4@MXene and BiOCl@MXene composite membranes respectively. The results showed that the antibacterial activity of M2~M4 against Escherichia coli and Staphylococcus aureus was further improved, especially the antibacterial ratio of M4 against Escherichia coli and Staphylococcus aureus was up to 50% and 82.4%, respectively. By comparing the surface morphology of MXene membrane and modified membrane treated bacteria through scanning electron microscopy (SEM), it was found that the cell density on modified membrane was significantly lower than that of pure MXene membrane.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xiaojian Qin
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhenglun Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhaomei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
8
|
Xie T, Sun S, Guo Y, Luo Y, Yang M, Yang B, Cui J. Fabrication of In-S-co-doped two-dimensional BiOCl coupling with surface hydroxylation toward simultaneously efficient charge separation and redox capability for photocatalytic water remediation. CHEMOSPHERE 2023; 315:137742. [PMID: 36608890 DOI: 10.1016/j.chemosphere.2023.137742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Tailoring energy band structure of bismuth oxychloride (BiOCl)-based photocatalysts by virtue of the metal and/or non-metal elements is one of the promising strategy to address environmental issues, especially plays a crucial role in water remediation. However, it still remains a great challenge to balance the light-harvesting and charge carriers separation. Herein, a feasible strategy was proposed for the simultaneous integration of energy-band modulation and surface hydroxylation to alleviate the as-mentioned contradiction and long-standing issues. By using a simple one-pot hydrothermal method, In-S-co-doped BiOCl photocatalyst coupling with surface hydroxylation (denoted as In/BOC-S-OH) was prepared by the simultaneous co-precipitation and ripening process and exhibited a good photocatalytic activity for removing tetracycline (TC) under visible light-irradiation than the counterparts of In-doped BiOCl (In/BOC), S-doped BiOCl (In/BOC-S) or surface -OH modification BiOCl (In/BOC-OH). Such satisfied photocatalytic efficiency benefits from the synergistic effect on the visible light capture, charge migration and separation associated with the introduction of intermediate energy levels and surface defect, respectively. Accompanying with the introduction of In and S hetero-atoms intercalation, both the potentials of valence and conduction bands were adjusted and the reduction of the bandgap could promote the capture of photons. Meanwhile, the powerful polarization effect associated with the non-uniform charge distribution could promote the special separation of carriers. More importantly, the surface defects induced by hydroxylation could act as traps for photogenerated electrons to stimulate the rapid separation of carriers, thereby causing the cleavage of antibiotics on the catalytic surface. This research offers a reliable strategy and promising scheme via effective solar energy conversion and charge carrier separation to advance photocatalytic wastewater remediation.
Collapse
Affiliation(s)
- Tingfang Xie
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China
| | - Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China.
| | - Yu Guo
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China
| | - Yongguang Luo
- School of Chemical and Resource Engineering, Honghe University, Mengzi, 661199, Yunnan, People's Republic of China
| | - Man Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China
| | - Bian Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China.
| | - Jie Cui
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Song Y, Li Y, Chen X, Meng C, Ma S, Li T, Jiang K, Hu C. Simultaneous degradation and separation of antibiotics in sewage effluent by photocatalytic nanofiltration membrane in a continuous dynamic process. WATER RESEARCH 2023; 229:119460. [PMID: 36493700 DOI: 10.1016/j.watres.2022.119460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Bifunctional photocatalytic nanofiltration (PNF) membrane is increasingly concerned in practical micro-polluted water purification, but there are still several bottlenecks that inhibit its practicality. In this context, the feasibility of a novel metal-free and visible light-responsive surface-anchored PNF membrane for simultaneously removing target antibiotics in real sewage effluent in a continuous dynamic process was explored. The results showed that the optimal PNF-4 membrane was expectedly consisted of an inside tight sub-nanopore structured separation layer and an outside thinner, smoother, super hydrophilic mesoporous degradation layer, respectively. Consequently, the activated PNF-4 membrane could synergistically reduce trimethoprim and sulfamethoxazole concentrations to below two orders of magnitude, accompanying with almost constant high water permeability, suggesting that the hydrophilic modification of the mesoporous degradation layer basically offsets its inherent hydraulic resistance. Also, after repeating the fouling-physical rinsing process three times lasted for 78 h, only sporadic adherent contaminants remained onto the top surface, together with the minimal total and irreversible fouling ratios (as low as 7.2% and 1.2%, respectively), strongly demonstrated that PNF-4 membrane displayed good self-cleaning performance. Undoubtedly, this will significantly reduce its potential cleaning frequency and maintenance cost in long-term operation. Meanwhile, the acute and chronic biotoxicities of its permeate to Virbrio qinghaiensis sp. -67 were also reduced sharply to 2.22% and 0.45%, respectively. All of these evidences suggest that the dual functions of PNF-4 membrane are synergetic in an uninterrupted permeating process. It will provide useful insights for continuously enhancing the practicality and effectiveness of PNF membrane in actual micro-polluted water purification scenarios.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China.
| | - Yajuan Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Xiaomei Chen
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Chunchun Meng
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Saifei Ma
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Tiemei Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Jiang Z, Zhang X, Guo S, Zheng Y, Wang J, Wen T, Wang X. Recent advances and perspectives of emerging two-dimensional transition metal carbide/nitride-based materials for organic pollutant photocatalysis. MATERIALS CHEMISTRY FRONTIERS 2023; 7:4658-4682. [DOI: doi.org/10.1039/d3qm00288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
This review outlines the fabrication strategies, morphological structures, electronic properties and applications of MXene based materials for photocatalysis in the treatment of recalcitrant organic pollutants (dyes, phenols, antibiotics and pharmaceuticals).
Collapse
Affiliation(s)
- Zheng Jiang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xinyue Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Sisheng Guo
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Yuqi Zheng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Jian Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
11
|
Zhang L, Liu Y, Zeng G, Yang Z, Lin Q, Wang Y, Wang X, Pu S. Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|