1
|
Aryanti PTP, Nugroho FA, Kusmala YY. Heparin and heparin-like modifications in hemodialysis membranes: Current innovations and future directions. Biotechnol Adv 2025; 80:108527. [PMID: 39922509 DOI: 10.1016/j.biotechadv.2025.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heparinized hemodialysis membranes represent a significant advancement in improving the biocompatibility and anticoagulant properties of dialysis treatments. This review explores the current challenges and innovations in developing these membranes, focusing on the incorporation of heparin and heparin-like substances to reduce protein adsorption, platelet adhesion, and clot formation. The methods for heparin immobilization, including covalent bonding, layer-by-layer assembly, and blending, offer promising results in enhancing membrane performance. However, issues such as long-term stability, large-scale production, and cost-effectiveness remain critical barriers to their widespread adoption. The review also highlights the role of surface activation techniques and nanotechnology in improving the functionality of heparinized membranes. Advanced methods like plasma treatment and polymer grafting provide better heparin attachment, while nanomaterial integration allows for improved blood compatibility and controlled heparin release. Despite these innovations, challenges such as heparin degradation, uneven coating, and the complexity of scaling up remain unresolved. Future research should focus on optimizing heparin distribution, enhancing durability, and making the production process more cost-efficient. This paper outlines potential interdisciplinary approaches, such as bioinspired materials and nanotechnology applications, to address these challenges and pave the way for next-generation hemodialysis membranes that are safer, more effective, and more accessible.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia.
| | - Febrianto Adi Nugroho
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| | - Yudith Yunia Kusmala
- Internal Medicine Dept, Faculty of Medicine, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| |
Collapse
|
2
|
Wang C, Jiang D, Ge H, Ning J, Li X, Liao M, Xiao X. Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2469-2483. [PMID: 39082937 DOI: 10.1080/09205063.2024.2384275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban-modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dayang Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Helmecke T, Hahn D, Ruland A, Tsurkan MV, Maitz MF, Werner C. Adsorbed polymer conjugates to adaptively inhibit blood coagulation activation by medical membranes. J Control Release 2024; 368:344-354. [PMID: 38417559 DOI: 10.1016/j.jconrel.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.
Collapse
Affiliation(s)
- Tina Helmecke
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Dominik Hahn
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, Dresden 01069, Germany; Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Zhang G, Bui V, Yin Y, Tsai EHR, Nam CY, Lin H. Carbon Capture Membranes Based on Amorphous Polyether Nanofilms Enabled by Thickness Confinement and Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440697 DOI: 10.1021/acsami.3c07046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.
Collapse
Affiliation(s)
- Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Vinh Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| | - Yifan Yin
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chang-Yong Nam
- Department of Material Science and Chemical Engineering, Stony Brook University, The State University at New York, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, New York 14260, United States
| |
Collapse
|