1
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Ma W, Tian L, Zhu Q, Zhang S, Wang F, Zhu H. Highly Hydrophilic Zirconia Composite Anion Exchange Membrane for Water Electrolysis and Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11849-11859. [PMID: 38411114 DOI: 10.1021/acsami.3c16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
To prepare anion exchange membranes with high water electrolysis and single fuel cell performance, an inorganic-organic composite (IOC) strategy with click cross-linked membranes coated with different contents of hydrophilic polar nanozirconia is proposed to fabricate composite membranes (CM) PBP-SH-Zrx. The performance test results showed that the CM PBP-SH-Zr4 not only has good through-plane ionic conductivity (167.7 mS cm-1, 80 °C), but also exhibits satisfactory dimensional stability (SR 16.5%, WU 206.4%, 80 °C), especially demonstrating excellent alkaline stability with only 16% degradation (2 M NaOH for 2200 h). In water electrolysis, the "microgap" between the membrane and catalyst layer (solid-solid interface) is alleviated, and the membrane electrode assembly (MEA) interfacial compatibility (liquid-solid-solid interface) is enhanced. The CM PBP-SH-Zr4 showed the lowest charge transfer resistance (Rct, 0.037 Ω cm2) and a high current density of 2.5 A cm-2 at 2.2 V, while the voltage drop was 0.361 mV h-1 after 360 h of endurance (six start-stop cycles) at 60 °C and 500 mA cm-2, proving a good water electrolysis durability. Moreover, an acceptable peak power density of 0.464 W cm-2 at 80 °C is achieved in a H2/O2 fuel cell with a PBP-SH-Zr4-AEM. Therefore, the IOC strategy can enhance the membrane's comprehensive performance and interface compatibility of MEA and may promote the development of anion exchange membranes (AEMs) for water electrolysis and fuel cells.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Wang F, Sun Z, Zhang H, Zhu H. Study on AEMs with Excellent Comprehensive Performance Prepared by Covalently Cross-Linked p-Triphenyl with SEBS Remotely Grafted Piperidine Cations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7894-7903. [PMID: 38300277 DOI: 10.1021/acsami.3c18256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and β positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaonan Sun
- China Fire and Rescue Institute, Beijing 102201, China
| | - Hanfei Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Chen H, Bang KT, Tian Y, Hu C, Tao R, Yuan Y, Wang R, Shin DM, Shao M, Lee YM, Kim Y. Poly(Ethylene Piperidinium)s for Anion Exchange Membranes. Angew Chem Int Ed Engl 2023; 62:e202307690. [PMID: 37524652 DOI: 10.1002/anie.202307690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The lack of anion exchange membranes (AEMs) that possess both high hydroxide conductivity and stable mechanical and chemical properties poses a major challenge to the development of high-performance fuel cells. Improving one side of the balance between conductivity and stability usually means sacrificing the other. Herein, we used facile, high-yield chemical reactions to design and synthesize a piperidinium polymer with a polyethylene backbone for AEM fuel cell applications. To improve the performance, we introduced ionic crosslinking into high-cationic-ratio AEMs to suppress high water uptake and swelling while further improving the hydroxide conductivity. Remarkably, PEP80-20PS achieved a hydroxide conductivity of 354.3 mS cm-1 at 80 °C while remaining mechanically stable. Compared with the base polymer PEP80, the water uptake of PEP80-20PS decreased by 69 % from 813 % to 350 %, and the swelling decreased substantially by 85 % from 350.0 % to 50.2 % at 80 °C. PEP80-20PS also showed excellent alkaline stability, 84.7 % remained after 35 days of treatment with an aqueous KOH solution. The chemical design in this study represents a significant advancement toward the development of simultaneously highly stable and conductive AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ran Tao
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong, University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
5
|
Chen JH, Choo YSL, Wang XH, Liu YJ, Yue XB, Gao XL, Gao WT, Zhang QG, Zhu AM, Liu QL. Effects of the crown ether cavity on the performance of anion exchange membranes. J Colloid Interface Sci 2023; 643:62-72. [PMID: 37044014 DOI: 10.1016/j.jcis.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising alternative to proton exchange membrane fuel cells (PEMFCs) due to their adaptability to low-cost stack components and non-noble-metals catalysts. However, the poor alkaline resistance and low OH- conductivity of anion exchange membranes (AEMs) have impeded the large-scale implementation of AEMFCs. Herein, the preparation of a new type of AEMs with crown ether macrocycles in their main chains via a one-pot superacid catalyzed reaction was reported. The study aimed to examine the influence of crown ether cavity size on the phase separation structure, ionic conductivity and alkali resistance of anion exchange membranes. Attributed to the self-assembly of crown ethers, the poly (crown ether) (PCE) AEMs with dibenzo-18-crown-6-ether (QAPCE-18-6) exhibit an obvious phase separated structure and a maximum OH- conductivity of 122.5 mS cm-1 at 80 °C (ionic exchange capacity is 1.51 meq g-1). QAPCE-18-6 shows a good alkali resistance with the OH- conductivity retention of 94.5% albeit being treated in a harsh alkali condition. Moreover, the hydrogen/oxygen single cell equipped with QAPCE-18-6 can achieve a peak power density (PPD) of 574 mW cm-2 at a current density of 1.39 A cm-2.
Collapse
Affiliation(s)
- Jia Hui Chen
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yvonne Shuen Lann Choo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia
| | - Xi Hao Wang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ying Jie Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xi Bin Yue
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xue Lang Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
6
|
Choi J, Min K, Mo YH, Han SB, Kim TH. Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers (Basel) 2023; 15:polym15071736. [PMID: 37050350 PMCID: PMC10098533 DOI: 10.3390/polym15071736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
For anion exchange membrane water electrolysis (AEMWE), two types of anion exchange membranes (AEMs) containing crosslinked poly(phenylene oxide) (PPO) and poly(styrene ethylene butylene styrene) (SEBS) were prepared with and without triazole. The impact of triazole was carefully examined. In this work, the PPO was crosslinked with the non-aryl ether-type SEBS to take advantage of its enhanced chemical stability and phase separation under alkaline conditions. Compared to their triazole-free counterpart, the crosslinked membranes made with triazole had better hydroxide-ion conductivity because of the increased phase separation, which was confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM). Moreover, they displayed improved mechanical and alkaline stability. Under water electrolysis (WE) conditions, a triazole-containing crosslinked PPO–SEBS membrane electrode assembly (MEA) was created using IrO2 as the anode and a Pt/C catalyst as the cathode. This MEA displayed a current density of 0.7 A/cm2 at 1.8 V, which was higher than that of the MEA created with the triazole-free counterpart. Our study indicated that the crosslinked PPO–SEBS membrane containing triazoles had improved chemo-physical and electrical capabilities for WE because of the strong hydrogen bonding between triazole and water/OH−.
Collapse
Affiliation(s)
- Jiyong Choi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Hwan Mo
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Sang-Beom Han
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-8358232
| |
Collapse
|
7
|
Clemens AL, Jayathilake BS, Karnes JJ, Schwartz JJ, Baker SE, Duoss EB, Oakdale JS. Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers (Basel) 2023; 15:polym15061534. [PMID: 36987313 PMCID: PMC10051716 DOI: 10.3390/polym15061534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Collapse
Affiliation(s)
- Auston L. Clemens
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| | | | - John J. Karnes
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Johanna J. Schwartz
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Sarah E. Baker
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric B. Duoss
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James S. Oakdale
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Correspondence: (A.L.C.); (J.S.O.)
| |
Collapse
|
8
|
Semi-interpenetrating anion exchange membranes using hydrophobic microporous linear poly(ether ketone). J Colloid Interface Sci 2023; 634:110-120. [PMID: 36535151 DOI: 10.1016/j.jcis.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisindane-based intrinsically microporous poly(ether ketone) (PEK-SBI). The formation of phase separated structures as a result of the incompatibility between the hydrophilic PBP network and the hydrophobic PEK-SBI segment, has successfully promoted the hydroxide ion conductivity of AEMs. A swelling ratio (SR) as low as 12.2 % at 80 °C was recorded for the sIPN containing hydrophobic PEK-SBI as the linear polymer and crosslinked structure with a mass ratio of PBP to PEK-SBI of 90/10 (sIPN-90/10(PEK-SBI)). The sIPN-90/10(PEK-SBI) AEM achieved the highest hydroxide ion conductivity of 122.4 mS cm-1 at 80 °C and a recorded ion exchange capacity (IEC) of 2.26 meq g-1. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) clearly revealed the improved phase separation structure of sIPN-90/10(PEK-SBI). N2 adsorption isotherm indicated that the Brunauer-Emmett-Teller (BET) surface area of the AEMs increased with the increase of microporous PEK-SBI content. Interestingly, the sIPN-90/10(PEK-SBI) AEM showed good alkaline stability for being able to maintain a conductivity of 94.7 % despite being soaked in a 1 M sodium hydroxide solution at 80 °C for 30 days. Meanwhile, a peak power density of 481 mW cm-2 can be achieved by the hydrogen/oxygen single cell using sIPN-90/10(PEK-SBI) as the AEM.
Collapse
|
9
|
Wang N, Zuo T, Liu K, Wei X, Hu S, Che Q. Enhancing Hydroxide Conductivity at Subzero Temperature of Anion Exchange Membranes Based on Imidazolium Modified Metal Organic Frameworks. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Min K, Lee Y, Choi Y, Kwon OJ, Kim TH. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Yuan W, Zeng L, Jiang S, Yuan C, He Q, Wang J, Liao Q, Wei Z. High performance poly(carbazolyl aryl piperidinium) anion exchange membranes for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|