1
|
Wang F, Zhang Y, Li Y, Chen B. Amidoxime-functionalized carboxymethylcellulose based porous hydrogels adsorbent fabricated from oyster shell stabilized Pickering emulsions for enhanced adsorption of Gd 3+ and Er 3. Int J Biol Macromol 2025; 307:141962. [PMID: 40081711 DOI: 10.1016/j.ijbiomac.2025.141962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Rare earth elements are strategic resources with diverse applications. However, during mining, wastewater rich in these elements is generated, leading to the loss of valuable rare-earth resources and poses a significant environmental threat. Therefore, a sustainable strategy for recycling rare earth elements from secondary sources is essential. This study developed a carboxymethylcellulose-based porous hydrogel adsorbent, termed ACMN, functionalized with an amidoxime group using a Pickering emulsion stabilized by waste oyster shell powder. The ability of ACMN to adsorb Gd3+ and Er3+ from water was investigated, with adsorption capacities reaching 298.12 mg/g for Gd³⁺ and 295.41 mg/g for Er³⁺ at 308 K. The adsorption process followed the Langmuir isotherm model, suggesting a monolayer adsorption mechanism. Thermodynamic analysis and the pseudo-second-order kinetic model indicated that the adsorption process was spontaneous and driven by chemical adsorption. The experimental and characterization data demonstrated that coordination and electrostatic interactions are the primary mechanisms driving the adsorption. Furthermore, ACMN retained its adsorption efficiency and regeneration even after five adsorption-desorption cycles. This research aligns with sustainable development strategies and offers a valuable adsorbent for rare earth recycling and a novel application for waste oyster shell powder.
Collapse
Affiliation(s)
- Feng Wang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuankai Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - YuanPeng Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Bo Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
2
|
Patil PD, Gargate N, Tiwari MS, Nadar SS. Two-dimensional metal-organic frameworks (2D-MOFs) as a carrier for enzyme immobilization: A review on design and bio-applications. Int J Biol Macromol 2025; 291:138984. [PMID: 39706457 DOI: 10.1016/j.ijbiomac.2024.138984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In the realm of carriers for enzyme immobilization, the use of MOFs has accelerated owing to their exceptional porosity and stability. Among these, 2D metal-organic frameworks (2D-MOFs) have emerged as promising supports for enzyme immobilization. This review highlights advancements in their synthesis, structural properties, and functional characteristics, focusing on enhancing catalytic performance and stability. Brief insights into computational approaches for optimizing these nanostructures and their catalytic efficiency are provided. The unique synergy between 2D MOF-based nanozymes and enzymes is discussed, showcasing their potential in diverse applications. Challenges in their practical implementation, prospective solutions, and future research directions are also outlined. This review emphasizes the transformative potential of 2D MOFs, focusing on their design and bioapplications and paving the way for innovative and sustainable strategies.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
3
|
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal-Organic Frameworks: A Review. MEMBRANES 2024; 14:201. [PMID: 39330542 PMCID: PMC11433959 DOI: 10.3390/membranes14090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Optimizing the structure of the polyamide (PA) layer to improve the separation performance of PA thin-film composite (TFC) membranes has always been a hot topic in the field of membrane preparation. As novel crystalline materials with high porosity, multi-functional groups, and good compatibility with membrane substrate, metal-organic frameworks (MOFs) have been introduced in the past decade for the modification of the PA structure in order to break through the separation trade-off between permeability and selectivity. This review begins by summarizing the recent progress in the control of MOF-based thin-film nanocomposite (TFN) membrane structures. The review also covers different strategies used for preparing TFN membranes. Additionally, it discusses the mechanisms behind how these strategies regulate the structure and properties of PA. Finally, the design of a competent MOF material that is suitable to reach the requirements for the fabrication of TFN membranes is also discussed. The aim of this paper is to provide key insights into the precise control of TFN-PA structures based on MOFs.
Collapse
Affiliation(s)
- Yanjun Jia
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowen Huo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lu Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Na Chang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
4
|
Yang Y, Yang Z, Zhuang G, Feng YN, Chen FF, Yu Y. Flexible and Free-Standing Metal-Organic Framework Nanowire Paper. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30306-30313. [PMID: 38819016 DOI: 10.1021/acsami.4c05031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Beyond traditional paper, multifunctional nanopaper has received much attention in recent years. Currently, many nanomaterials have been successfully used as building units of nanopaper. However, it remains a great challenge to prepare flexible and freestanding metal-organic framework (MOF) nanopaper owing to the low aspect ratio and brittleness of MOF nanocrystals. Herein, this work develops a flexible and free-standing MOF nanopaper with MOF nanowires as building units. The manganese-based MOF (Mn-MOF) nanowires with lengths up to 100 μm are synthesized by a facile solvothermal method. Through a paper-making technique, the Mn-MOF nanowires interweave with each other to form a three-dimensional architecture, thus creating a flexible and free-standing Mn-MOF nanowire paper. Furthermore, the surface properties can be engineered to obtain high hydrophobicity by modifying polydimethylsiloxane (PDMS) on the surfaces of the Mn-MOF nanowire paper. The water contact angle reaches 130°. As a proof of concept, this work presents two potential applications of the Mn-MOF/PDMS nanowire paper: (i) The as-prepared Mn-MOF/PDMS nanowire paper is compatible with a commercial printer. The as-printed colorful patterns are of high quality, and (ii) benefiting from the highly hydrophobic surfaces, the Mn-MOF/PDMS nanowire paper is able to efficiently separate oil from water.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Zhe Yang
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Guoxin Zhuang
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Ya-Nan Feng
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
5
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
6
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
7
|
Sun J, Zhang Q, Xue W, Ding W, Zhang K, Wang S. An economical and simple method for preparing highly permeable and chlorine-resistant reverse osmosis membranes with potential commercial applications. RSC Adv 2023; 13:32083-32096. [PMID: 37920753 PMCID: PMC10618943 DOI: 10.1039/d3ra06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
The improvement in the overall efficiency of thin-film composite (TFC) reverse osmosis (RO) membranes is limited by their low permeability and sensitivity to degradation by chlorine. In the present study, polypiperazine (PIP), the commonly used amine monomer in preparing commercial TFC nanofiltration (NF) membranes, was used to regulate the m-phenylenediamine (MPD) based interfacial polymerization (IP) process. The results showed that addition of PIP optimized the micro-structure and surface properties of the polyamide (PA) layer. When the MPD and PIP mass ratio was 1 : 1, the TFCW-1:1 membrane exhibited 70% flux enhancement compared to pure MPD-based TFCW-1:0 membranes. Besides, the TFCW-1:1 membrane exhibited better chlorine-resistant performance since the NaCl rejection declined to just 3.8% while it was 11.3% for TFCW-1:0 membranes after immersion in 500 ppm NaClO solution for 48 h. Such improvement can be attributed to the increased number of unreacted amine groups and the thickness of the PA layer that PIP brought, which provided a sacrificial protective layer to consume the active chlorine, and thus maintain the integrity of the inner rejection layer. In all, the novelty and purpose of the present work is to find a more simple and scalable method to fabricate high-performance TFC RO membranes by using commonly, cheaply and frequently used materials.
Collapse
Affiliation(s)
- Junqing Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Qianwen Zhang
- School of Environment, Tsinghua University Beijing 100084 China
| | - Wenjing Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Shandong Shuifa Environmental Technology Co., Ltd Jining 272000 China
| | - Kefeng Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Shan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
8
|
Vishwakarma V, Kandasamy J, Vigneswaran S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. MEMBRANES 2023; 13:736. [PMID: 37623797 PMCID: PMC10456448 DOI: 10.3390/membranes13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida 203201, India
| | - Jaya Kandasamy
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
| | - Saravanamuthu Vigneswaran
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
9
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
10
|
Nguyen AG, Park CJ. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Liu Y, Wu H, Guo S, Cong C, Du J, Xin Z, Zhang H, Wang J, Wang Z. Is the solvent activation strategy before heat treatment applicable to all reverse osmosis membranes? J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Bakhodaye Dehghanpour S, Parvizian F, Vatanpour V, Razavi M. PVA/TS-1 composite embedded thin-film nanocomposite reverse osmosis membrane with enhanced desalination performance and fouling resistance. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Fahimeh Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University Maslak, Istanbul, Turkey
| | - Mansour Razavi
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
13
|
Yu Y, Zhang X, Lu P, He D, Shen L, Li Y. Enhanced Separation Performance of Polyamide Thin-Film Nanocomposite Membranes with Interlayer by Constructed Two-Dimensional Nanomaterials: A Critical Review. MEMBRANES 2022; 12:1250. [PMID: 36557157 PMCID: PMC9784344 DOI: 10.3390/membranes12121250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 05/31/2023]
Abstract
Thin-film composite (TFC) polyamide (PA) membrane has been widely applied in nanofiltration, reverse osmosis, and forward osmosis, including a PA rejection layer by interfacial polymerization on a porous support layer. However, the separation performance of TFC membrane is constrained by the trade-off relationship between permeability and selectivity. Although thin-film nanocomposite (TFN) membrane can enhance the permeability, due to the existence of functionalized nanoparticles in the PA rejection layer, the introduction of nanoparticles leads to the problems of the poor interface compatibility and the nanoparticles agglomeration. These issues often lead to the defect of PA rejection layers and reduction in selectivity. In this review, we summarize a new class of structures of TFN membranes with functionalized interlayers (TFNi), which promises to overcome the problems associated with TFN membranes. Recently, functionalized two-dimensional (2D) nanomaterials have received more attention in the assembly materials of membranes. The reported TFNi membranes with 2D interlayers exhibit the remarkable enhancement on the permeability, due to the shorter transport path by the "gutter mechanism" of 2D interlayers. Meanwhile, the functionalized 2D interlayers can affect the diffusion of two-phase monomers during the interfacial polymerization, resulting in the defect-free and highly crosslinked PA rejection layer. Thus, the 2D interlayers enabled TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. This paper provides a critical review on the emerging 2D nanomaterials as the functionalized interlayers of TFNi membranes. The characteristics, function, modification, and advantages of these 2D interlayers are summarized. Several perspectives are provided in terms of the critical challenges for 2D interlayers, managing the trade-off between permeability, selectivity, and cost. The future research directions of TFNi membranes with 2D interlayers are proposed.
Collapse
Affiliation(s)
- Yifei Yu
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Xianjuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Dingbin He
- Hymater Co., Ltd., 777 Qingfeng Road, Ningbo 315000, China
| | - Liqiang Shen
- Ningbo Shuiyi Membrane Technology Development Co., Ltd., 368 Xingci One Road, Ningbo 315336, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
14
|
Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ee LY, Tan RPW, Li SFY. Facile electrospray fabrication of ultralow biofouling cellulose acetate desalination membrane with nanocellulose/UiO66-NH2 fillers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203637. [PMID: 36296828 PMCID: PMC9610978 DOI: 10.3390/nano12203637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 05/26/2023]
Abstract
Water shortage is a major worldwide issue. Filtration using genuine polymeric membranes demonstrates excellent pollutant separation capabilities; however, polymeric membranes have restricted uses. Nanocomposite membranes, which are produced by integrating nanofillers into polymeric membrane matrices, may increase filtration. Carbon-based nanoparticles and metal/metal oxide nanoparticles have received the greatest attention. We evaluate the antifouling and permeability performance of nanocomposite membranes and their physical and chemical characteristics and compare nanocomposite membranes to bare membranes. Because of the antibacterial characteristics of nanoparticles and the decreased roughness of the membrane, nanocomposite membranes often have greater antifouling properties. They also have better permeability because of the increased porosity and narrower pore size distribution caused by nanofillers. The concentration of nanofillers affects membrane performance, and the appropriate concentration is determined by both the nanoparticles' characteristics and the membrane's composition. Higher nanofiller concentrations than the recommended value result in deficient performance owing to nanoparticle aggregation. Despite substantial studies into nanocomposite membrane manufacturing, most past efforts have been restricted to the laboratory scale, and the long-term membrane durability after nanofiller leakage has not been thoroughly examined.
Collapse
Affiliation(s)
- Nouf F. Al Harby
- Department of Chemistry, College of Science, Qassim University, Qassim 52571, Saudi Arabia
| | - Mervette El-Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mahmoud M. Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| |
Collapse
|
17
|
An Evolving MOF Thin-Film Nanocomposite Tubular Ceramic Membrane for Desalination Pretreatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Wang CF, Wang J, Wang XP, Zhang X, Meng Y, Chen F, Lin L, Meng XM. Rational design of three Co(II) coordination polymers based on a semirigid tricarboxylate ligand: Syntheses, structural variability, electrochemical behavior, magnetic and photocatalytic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
20
|
Lim YJ, Lai GS, Zhao Y, Ma Y, Torres J, Wang R. A scalable method to fabricate high-performance biomimetic membranes for seawater desalination: Incorporating pillar[5]arene water nanochannels into the polyamide selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Li X, Afsar NU, Chen X, Wu Y, Chen Y, Shao F, Song J, Yao S, Xia R, Qian J, Wu B, Miao J. Negatively Charged MOF-Based Composite Anion Exchange Membrane with High Cation Selectivity and Permeability. MEMBRANES 2022; 12:membranes12060601. [PMID: 35736308 PMCID: PMC9227639 DOI: 10.3390/membranes12060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022]
Abstract
Every metal and metallurgical industry is associated with the generation of wastewater, influencing the living and non-living environment, which is alarming to environmentalists. The strict regulations about the dismissal of acid and metal into the environment and the increasing emphasis on the recycling/reuse of these effluents after proper remedy have focused the research community's curiosity in developing distinctive approaches for the recovery of acid and metals from industrial wastewaters. This study reports the synthesis of UiO-66-(COOH)2 using dual ligand in water as a green solvent. Then, the prepared MOF nanoparticles were introduced into the DMAM quaternized QPPO matrix through a straightforward blending approach. Four defect-free UiO-66-(COOH)2/QPPO MMMs were prepared with four different MOF structures. The BET characterization of UiO-66-(COOH)2 nanoparticles with a highly crystalline structure and sub-nanometer pore size (~7 Å) was confirmed by XRD. Because of the introduction of MOF nanoparticles with an electrostatic interaction and pore size screening effect, a separation coefficient (SHCl/FeCl2) of 565 and UHCl of 0.0089 m·h-1 for U-C(60)/QPPO were perceived when the loading dosage of the MOF content was 10 wt%. The obtained results showed that the prepared defect-free MOF membrane has broad prospects in acid recovery applications.
Collapse
Affiliation(s)
- Xiaohuan Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China;
| | - Xiaopeng Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yifeng Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Yu Chen
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Feng Shao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiaxian Song
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Shuai Yao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; (X.L.); (X.C.); (Y.W.); (Y.C.); (F.S.); (J.S.); (S.Y.); (R.X.); (J.Q.)
- Correspondence: (B.W.); (J.M.)
| |
Collapse
|