1
|
Liu L, Du W, Zhang N. Advanced Anion Exchange Membranes: Structural Insights and Property Optimization. Chem Asian J 2025; 20:e202401454. [PMID: 40008985 DOI: 10.1002/asia.202401454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Indexed: 02/27/2025]
Abstract
With the increasing demand for clean energy, driven by advancements in science and technology, anion exchange membrane fuel cells (AEMFCs) have emerged as a promising solution for efficient and clean energy conversion. As the core component of AEMFCs, anion exchange membranes (AEMs) are crucial for ion transport and the separation of the cathode and anode. The performance of AEMs primarily depends on two key factors: ionic conductivity and stability, which often require a delicate balance. The ion conduction process is closely linked to the membrane's microscopic structure. This concept article reviews the development of various AEM types, including homogeneous polymer membranes, hybrid membranes, and nanoporous framework membranes, with a focus on their structural characteristics. Additionally, it explores the design and optimization of AEMs in relation to key properties such as ionic conductivity, dimensional stability, and alkali resistance, providing a reference for future innovations in ion-exchange membranes for AEMFCs.
Collapse
Affiliation(s)
- Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenguang Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
2
|
Wang W, Guo R, Zheng A, Jin X, Jia X, Ren Z, Han Y, Zhang L, Zhai Y, Liu X, Jiang H, Zhao Y, Zhou KG, Wu M, Jiang Z. Promoting in-situ stability of hydroxide exchange membranes by thermally conductive network for durable water electrolysis. Nat Commun 2025; 16:934. [PMID: 39843436 PMCID: PMC11754833 DOI: 10.1038/s41467-025-56262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity. Accordingly, we propose highly thermally conductive HEMs with an efficient three-dimensional (3D) thermal diffusion network to promote the in-situ stability of HEM for water electrolysis. Based on the 3D heat conductive network, the thermal conductivity of polymeric HEM is boosted by 32 times and thereby reduce the HEM temperature by up to 4.9 °C in a water electrolyzer at the current density of 1 A cm-2. Thus, the thermally conductive HEM exhibits negligible degradation after 20,000 start/stop cycles and reduces the degradation rate by 6 times compared to the pure polymeric HEM in a water electrolyzer. This study manifests the significance of thermal conductivity of HEM on the durability of water electrolysis, which provides guidelines on the rational design of highly durable HEMs in practical operation conditions for water electrolysis, fuel cells, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Ruixiang Guo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Aodi Zheng
- Department of Energy and Power Engineering, Tianjin University, Tianjin, China
| | - Xiaorui Jin
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Xiongjie Jia
- Department of Energy and Power Engineering, Tianjin University, Tianjin, China
| | - Zhiwei Ren
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cell & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yangkai Han
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cell & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
| | - Yeming Zhai
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaofen Liu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Haoran Jiang
- Department of Energy and Power Engineering, Tianjin University, Tianjin, China.
| | - Yun Zhao
- Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cell & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Kai-Ge Zhou
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Meiling Wu
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Zhongyi Jiang
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
3
|
Chu D, Shao R, Zhang J, Zhou Q, Zheng Z, Xu Y, Liu L. Partially PEG-Grafted Poly(Terphenyl Piperidinium) Anion Exchange Membranes with Balanced Properties for Alkaline Fuel Cells. Macromol Rapid Commun 2024; 45:e2400336. [PMID: 38924226 DOI: 10.1002/marc.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Poly(ethylene glycol) (PEG) or oligo (ethylene glycol) (OEG) grafted anion exchange membranes (AEMs) exhibit improved ionic conductivity, high alkaline stability, and subsequent boosted AEM fuel cell performance, but too much PEG/OEG side chains may can result in a reduction in the ion exchange capacity (IEC), which can have adverse effects on ion transport. Here, a series of partially PEG-grafted poly(terphenyl piperidinium) with different side chain length are synthesized using simple postpolymerization modification to produce AEMs with balanced properties. The polar and flexible PEG side chains are responsible for the controlled water uptake and swelling, superior hydroxide conductivity (122 mS cm-1 at 80 °C with an IEC of 1.99 mmol g-1), and enhanced alkaline stability compared to the reference sample without PEG grafts (PTP). More importantly, the performance of AEM fuel cell (AEMFC) with the membrane containing partial PEG side chains surpasses that with PTP membrane, demonstrating a highest peak power density of 1110 mW cm-2 at 80 °C under optimized conditions. This work provides a novel approach to the fabrication of high-performance AEM materials with balanced properties for alkaline fuel cell application.
Collapse
Affiliation(s)
- Dongrui Chu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Runan Shao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jingjing Zhang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Qiyu Zhou
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhichao Zheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yangyang Xu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Lei Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
4
|
Zhang Q, Yuan Y, Zhang J, Fang P, Pan J, Zhang H, Zhou T, Yu Q, Zou X, Sun Z, Yan F. Machine Learning-Aided Design of Highly Conductive Anion Exchange Membranes for Fuel Cells and Water Electrolyzers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404981. [PMID: 39075826 DOI: 10.1002/adma.202404981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Alkaline anion exchange membrane (AEM)-based fuel cells (AEMFCs) and water electrolyzers (AEMWEs) are vital for enabling the efficient and large-scale utilization of hydrogen energy. However, the performance of such energy devices is impeded by the relatively low conductivity of AEMs. The conventional trial-and-error approach to designing membrane structures has proven to be both inefficient and costly. To address this challenge, a fully connected neural network (FCNN) model is developed based on acid-catalyzed AEMs to analyze the relationship between structure and conductivity among 180,000 AEM variations. Under machine learning guidance, anilinium cation-type membranes are designed and synthesized. Molecular dynamics simulations and Mulliken charge population analysis validated that the presence of a large anilinium cation domain is a result of the inductive effect of N+ and benzene rings. The interconnected anilinium cation domains facilitated the formation of a continuous ion transport channel within the AEMs. Additionally, the incorporation of the benzyl electron-withdrawing group heightened the inductive effect, leading to high conductivity AEM variant as screened by the machine learning model. Furthermore, based on the highly active and low-cost monomers given by machine learning, the large-scale synthesis of anilinium-based AEMs confirms the potential for commercial applications.
Collapse
Affiliation(s)
- Qiuhuan Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongjiang Yuan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiale Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Pengda Fang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ji Pan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Hao Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tao Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qikun Yu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Research Center for Environmental Functional Materials, School of Chemistry and Chemical Engineering Huaiyin Normal University, Huaian, 223300, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201600, China
| |
Collapse
|
5
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Gao H, Jin C, Li X, So YM, Pan Y. A Hydrophilic Polyethylene Glycol-Blended Anion Exchange Membrane to Facilitate the Migration of Hydroxide Ions. Polymers (Basel) 2024; 16:1464. [PMID: 38891411 PMCID: PMC11175046 DOI: 10.3390/polym16111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the most important sources for green hydrogen, anion exchange membrane water electrolyzers (AEMWEs) have been developing rapidly in recent decades. Among these components, anion exchange membranes (AEMs) with high ionic conductivity and good stability play an important role in the performance of AEMWEs. In this study, we have developed a simple blending method to fabricate the blended membrane ImPSF-PEGx via the introduction of a hydrophilic PEG into the PSF-based ionic polymer. Given their hydrophilicity and coordination properties, the introduced PEGs are beneficial in assembling the ionic groups to form the ion-conducting channels. Moreover, an asymmetric structure is observed in ImPSF-PEGx membranes with a layer of finger-like cracks at the upper surface because PEGs can act as pore-forming agents. During the study, the ImPSF-PEGx membranes exhibited higher water uptake and ionic conductivity with lower swelling ratios and much better mechanical properties in comparison to the pristine ImPSF membrane. The ImPSF-PEG1000 membrane showed the best overall performance among the membranes with higher ionic conductivity (82.6 mS cm-1 at 80 °C), which was approximately two times higher than the conductivity of ImPSF, and demonstrated better mechanical and alkaline stability. The alkaline water electrolyzer assembled by ImPSF-PEG1000 achieved a current density of 606 mA cm-2 at 80 °C under conditions of 1 M KOH and 2.06 V, and maintained an essentially unchanged performance after 48 h running.
Collapse
Affiliation(s)
- Huaiming Gao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Chenglou Jin
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xia Li
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu Pan
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Li Q, Wu L, Pang Y, Liu B, Zhu X, Zhao C. Novel Fluorinated Anion Exchange Membranes Based on Poly(Pentafluorophenyl-Carbazole) with High Ionic Conductivity and Alkaline Stability for Fuel Cell Applications. Macromol Rapid Commun 2024; 45:e2300734. [PMID: 38361081 DOI: 10.1002/marc.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Constructing good microphase separation structures by designing different polymer backbones and ion-conducting groups is an effective strategy for improving the ionic conductivity and chemical stability of anion exchange membranes (AEMs). In this study, a series of AEMs based on the poly(pentafluorophenylcarbazole) backbone grafted with different cationic groups are designed and prepared to construct well-defined microphase separation morphology and improve the trade-off between the properties of AEMs. Highly hydrophobic fluorinated backbone and alkyl spaces enhance phase separation and construct interconnected hydrophilic channels for anion transport. The ionic conductivity of the PC-PF-QA membrane is 123 mS cm-1 at 80 °C, and the ionic conductivity of the PC-PF-QA membrane decreased by only 6% after 960 h of immersion at 60 °C in 1 M NaOH aqueous solution. The maximum peak power density of the single cell based on PC-PF-QA is 214 mW cm-2 at 60 °C.
Collapse
Affiliation(s)
- Qijia Li
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liming Wu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yang Pang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Binghui Liu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuanbo Zhu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Ma W, Tian L, Zhu Q, Zhang S, Wang F, Zhu H. Highly Hydrophilic Zirconia Composite Anion Exchange Membrane for Water Electrolysis and Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11849-11859. [PMID: 38411114 DOI: 10.1021/acsami.3c16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
To prepare anion exchange membranes with high water electrolysis and single fuel cell performance, an inorganic-organic composite (IOC) strategy with click cross-linked membranes coated with different contents of hydrophilic polar nanozirconia is proposed to fabricate composite membranes (CM) PBP-SH-Zrx. The performance test results showed that the CM PBP-SH-Zr4 not only has good through-plane ionic conductivity (167.7 mS cm-1, 80 °C), but also exhibits satisfactory dimensional stability (SR 16.5%, WU 206.4%, 80 °C), especially demonstrating excellent alkaline stability with only 16% degradation (2 M NaOH for 2200 h). In water electrolysis, the "microgap" between the membrane and catalyst layer (solid-solid interface) is alleviated, and the membrane electrode assembly (MEA) interfacial compatibility (liquid-solid-solid interface) is enhanced. The CM PBP-SH-Zr4 showed the lowest charge transfer resistance (Rct, 0.037 Ω cm2) and a high current density of 2.5 A cm-2 at 2.2 V, while the voltage drop was 0.361 mV h-1 after 360 h of endurance (six start-stop cycles) at 60 °C and 500 mA cm-2, proving a good water electrolysis durability. Moreover, an acceptable peak power density of 0.464 W cm-2 at 80 °C is achieved in a H2/O2 fuel cell with a PBP-SH-Zr4-AEM. Therefore, the IOC strategy can enhance the membrane's comprehensive performance and interface compatibility of MEA and may promote the development of anion exchange membranes (AEMs) for water electrolysis and fuel cells.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Chen K, Zeng Y, Gao X, Liu X, Zhu L, Wu F. Organic Semiconductor Based on N, S-Containing Crown Ether Enabling Efficient and Stable Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301349. [PMID: 37867146 DOI: 10.1002/cssc.202301349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
The uncoordinated lead cations are ubiquitous in perovskite films and severely affect the efficiency and stability of perovskite solar cells (PSCs). In this work, 15-crown-5 with various heteroatoms are connected to the organic semiconductor carbazole diphenylamine, and two new compounds, CDT-S and CDT-N, are developed to modify the Pb2+ defects in perovskite films through the anti-solvent method. Apart from the oxygen atoms, there are also N atoms on crown ether ring in CDT-N, and both S and N heteroatoms in CDT-S. The heteroatoms enhance the interaction between the crown ether-based semiconductors and the undercoordinated Pb2+ defect in perovskite. Particularly, the stronger interaction between S atoms and Pb2+ further enhances the defect passivation effect of CDT-S than CDT-N, thereby more effectively suppressing the non-radiative recombination of charge carriers. Finally, the efficiency of the device treated with CDT-S is up to 23.05 %. Moreover, the unencapsulated device based on CDT-S maintained 90.5 % of the initial efficiency after being stored under dark conditions for 1000 hours, demonstrating good long-term stability. Our work demonstrates that crown ethers are promising in perovskite solar cells, and the crown ether containing multiple heteroatoms could effectively improve both efficiency and stability of devices.
Collapse
Affiliation(s)
- Kaixing Chen
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ye Zeng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xing Gao
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaorui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Linna Zhu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Wu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
10
|
Zhang S, Ma W, Tian L, Kong D, Zhu Q, Wang F, Zhu H. Twisted Poly( p-terphenyl- co- m-terphenyl)-Based Anion Exchange Membrane for Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7660-7669. [PMID: 38295432 DOI: 10.1021/acsami.3c15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In order to improve the mechanical and water electrolysis performance of anion exchange membranes (AEMs), we adjusted the ratio between p-terphenyl and m-terphenyl to balance the backbone conformation, which gives it a better suitability for a better combination with cations. The results showed that poly(m-terphenyl-co-p-terphenyl)-based AEMs have excellent mechanical properties. Among them, the m-p-TP-40-BOP-ASU membrane has the highest tensile strength and elongation at break (75.72 MPa and 16.07%). The ionic conductivity reaches 137.14 mS cm-1 at 80 °C owing to the fact that efficient ion-conducting channels are formed by well-balanced molecular structures. The current density of the m-p-TP-40-BOP-ASU membrane reached 1.96 A cm-2 (1 M KOH aq, 2.0 V and 60 °C). After testing for 112 h under a current density of 500 mA cm-2, the voltage increased by 102 mV compared to the initial electrolysis voltage. All results have shown that m-p-TP-x-BOP-ASU has excellent electrolysis performance and electrochemical durability and has a promising application prospect in AEM water electrolyzers.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Defang Kong
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Guo M, Ban T, Wang Y, Wang X, Zhu X. "Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability. J Colloid Interface Sci 2023; 638:349-362. [PMID: 36746053 DOI: 10.1016/j.jcis.2023.01.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".
Collapse
Affiliation(s)
- Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
12
|
Chen JH, Choo YSL, Wang XH, Liu YJ, Yue XB, Gao XL, Gao WT, Zhang QG, Zhu AM, Liu QL. Effects of the crown ether cavity on the performance of anion exchange membranes. J Colloid Interface Sci 2023; 643:62-72. [PMID: 37044014 DOI: 10.1016/j.jcis.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) have emerged as a promising alternative to proton exchange membrane fuel cells (PEMFCs) due to their adaptability to low-cost stack components and non-noble-metals catalysts. However, the poor alkaline resistance and low OH- conductivity of anion exchange membranes (AEMs) have impeded the large-scale implementation of AEMFCs. Herein, the preparation of a new type of AEMs with crown ether macrocycles in their main chains via a one-pot superacid catalyzed reaction was reported. The study aimed to examine the influence of crown ether cavity size on the phase separation structure, ionic conductivity and alkali resistance of anion exchange membranes. Attributed to the self-assembly of crown ethers, the poly (crown ether) (PCE) AEMs with dibenzo-18-crown-6-ether (QAPCE-18-6) exhibit an obvious phase separated structure and a maximum OH- conductivity of 122.5 mS cm-1 at 80 °C (ionic exchange capacity is 1.51 meq g-1). QAPCE-18-6 shows a good alkali resistance with the OH- conductivity retention of 94.5% albeit being treated in a harsh alkali condition. Moreover, the hydrogen/oxygen single cell equipped with QAPCE-18-6 can achieve a peak power density (PPD) of 574 mW cm-2 at a current density of 1.39 A cm-2.
Collapse
Affiliation(s)
- Jia Hui Chen
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yvonne Shuen Lann Choo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor Darul Ehsan, Malaysia
| | - Xi Hao Wang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ying Jie Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xi Bin Yue
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xue Lang Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
13
|
Wang JJ, Gao WT, Choo YSL, Cai ZH, Zhang QG, Zhu AM, Liu QL. Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. J Colloid Interface Sci 2023; 629:377-387. [DOI: 10.1016/j.jcis.2022.08.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
14
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Wei C, Yu W, Wu L, Ge X, Xu T. Physically and Chemically Stable Anion Exchange Membranes with Hydrogen-Bond Induced Ion Conducting Channels. Polymers (Basel) 2022; 14:polym14224920. [PMID: 36433047 PMCID: PMC9696997 DOI: 10.3390/polym14224920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Anion exchange membranes (AEMs) with desirable properties are the crucial components for numerous energy devices such as AEM fuel cells (AEMFCs), AEM water electrolyzers (AEMWEs), etc. However, the lack of suitable AEMs severely limits the performance of devices. Here, a series of physically and chemically stable AEMs have been prepared by the reaction between the alkyl bromine terminal ether-bond-free aryl backbone and the urea group-containing crosslinker. Morphology analyses confirm that the hydrogen bonding interaction between urea groups is capable of driving the ammonium cations to aggregate and further form continuous ion-conducting channels. Therefore, the resultant AEM demonstrates remarkable OH− conductivity (59.1 mS cm−1 at 30 °C and 122.9 mS cm−1 at 90 °C) despite a moderate IEC (1.77 mmol g−1). Simultaneously, due to the adoption of ether-bond-free aryl backbone and alkylene chain-modified trimethylammonium cation, the AEM possesses excellent alkaline stability (87.3% IEC retention after soaking in 1 M NaOH for 1080 h). Moreover, the prepared AEM shows desirable mechanical properties (tensile stress > 25 MPa) and dimensional stability (SR = 20.3% at 90 °C) contributed by the covalent-bond and hydrogen-bond crosslinking network structures. Moreover, the resulting AEM reaches a peak power density of 555 mW cm−2 in an alkaline H2/O2 single fuel cell at 70 °C without back pressure. This rational structural design presented here provides inspiration for the development of high-performance AEMs, which are crucial for membrane technologies.
Collapse
|
16
|
Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|