1
|
Li J, Li J, Wan L, Li Z. Advances in poly(ethylene oxide)-based solid-state lithium-ion battery research. SOFT MATTER 2025; 21:3410-3424. [PMID: 40207371 DOI: 10.1039/d4sm01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Solid-state lithium-ion batteries are increasingly recognized as a pivotal advancement for the next generation of energy storage technology, owing to their superior safety, high energy density, and extended cycle life. Among the various solid-state polymer materials for Li-ion batteries, poly(ethylene oxide) (PEO)-based solid-state electrolytes have garnered significant attention owing to their excellent interfacial affinity and high solubility for different lithium salts. However, PEO-based solid electrolytes continue to face obstacles, such as diminished ionic conductivity at ambient temperature, inadequate mechanical characteristics, and severe concentration polarization in practical applications. Researchers have proposed a series of modification strategies to enhance the room temperature ionic conductivity by exploring polymer copolymerization, blending, and hyperbranched methods. To optimize the mechanical properties, studies mainly focus on adding high-strength fillers, introducing cross-linking networks, and developing self-repairing materials. To mitigate the concentration polarization effect, a polyanionic configuration is introduced into the polymer backbone, accompanied by the addition of fillers having anionic receptor groups. In this review, the physicochemical properties and Li+ migration mechanisms of PEO-based solid polymer electrolytes are systematically described, focusing on the aforementioned modification strategies and their research progress. Additionally, it offers insights into future development trends.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Jiapeng Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Lu Wan
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| | - Zhaolei Li
- Department of Polymer Materials, School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China.
| |
Collapse
|
2
|
Tang J, Chen E, Wang D, Qin W, Fang S, Xu T, Liu J, Tang M, Wang Z. A Fiber-Reinforced Poly(ionic liquid) Solid Electrolyte with Low Flammability and High Conductivity for High-Performance Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19682-19691. [PMID: 40116045 DOI: 10.1021/acsami.4c23109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Construction of polymer-based solid electrolytes with both low flammability and high ionic conductivity for lithium-metal batteries is still a great challenge but highly desirable. Herein, we report on a series of fiber-reinforced poly(ionic liquid) solid electrolytes prepared through an in situ copolymerization of ionic liquid monomers (IL) and poly(ethylene glycol) diacrylate (PEGDA) units with different ratios inside a polyacrylonitrile (PAN) fiber membrane. Such PAN/Poly-IL-PEGDA composite electrolytes demonstrate promising low flammability due to the excellent fire-resistant feature of the employed IL units. Moreover, it is remarkable to see that the optimized PAN/Poly-IL-PEGDA-1 electrolyte also exhibits highly dense structure with low thickness (31 μm), high ionic conductivity (0.32 mS cm-1 at 30 °C), and wide electrochemical window (up to 4.8 V). As a result, both LiFePO4//Li and NCM//Li full cells with such an electrolyte exhibit both excellent rate capability and cycling stability. This study provides a simple strategy for preparing composite polymer electrolytes with low flammability and high conductivity for high-performance lithium-metal batteries.
Collapse
Affiliation(s)
- Junyan Tang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - En Chen
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Dehua Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wen Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Siyu Fang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Xu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Junjie Liu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Mi Tang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhengbang Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
3
|
Zang Y, Irfan M, Yang Z, Zhang W. Diethylenetriaminepentaacetic Acid-based Conducting Solid Polymer Electrolytes Impede Lithium Dendrites and Impart Antioxidant Capacity in Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404506. [PMID: 39120001 PMCID: PMC11481259 DOI: 10.1002/advs.202404506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Indexed: 08/10/2024]
Abstract
In the development of lithium-ion batteries (LIBs), cheaper and safer solid polymer electrolytes are expected to replace combustible organic liquid electrolytes to meet the larger market demand. However, low ionic conductivity and inadequate cycling stability impede their commercial viability. Herein, a novel flexible conducting solid polymer electrolytes (CSPEs) based on polyvinyl alcohol (PVA) and ion-polarized diethylenetriaminepentaacetic acid (P-DETP) is developed for the first time and applied in LIBs. PVA and P-DETP form a compact polymer network through hydrogen bonding, enhancing the thermomechanical stability of CSPE while restricting the migration of larger anions. Furthermore, density functional theory calculations confirm that P-DETP can facilitate the dissociation of Li+-TFSI- via electrostatic attraction, resulting in increased mobility of lithium ions. Additionally, P-DETP contributes to the formation of a stable electrode-electrolyte interface layer, effectively suppressing the growth of lithium dendrites and improving antioxidant capacity. These synergistic effects enable CSPE to exhibit remarkable properties including high ionic conductivity (2.8 × 10-4 S cm-1), elevated electrochemical potential (5.1 V), and excellent lithium transference number (0.869). Notably, the P-DETP/LiTFSI CSPE demonstrates stable performance not only in LiFePO4 batteries but also adapts to high-nickel ternary LiNi0.88Co0.06Mn0.06O2 cathode, highlighting its immense potential for application in high energy density LIBs.
Collapse
Affiliation(s)
- Yuli Zang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Muhammad Irfan
- Department of Chemical and Energy EngineeringPak‐Austria Fachhochschule: Institute of Applied Sciences and TechnologyMangHaripurPakistan
| | - Zeheng Yang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Weixin Zhang
- School of Chemistry and Chemical EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| |
Collapse
|
4
|
Hu X, Liu J, Zhang B. Enhanced Lithium-Ion Transport in Lithium Metal Batteries Using ZSM-5 Nanosheets Hybridized Solid Polymer Electrolytes. Polymers (Basel) 2024; 16:1604. [PMID: 38891549 PMCID: PMC11174945 DOI: 10.3390/polym16111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Solid polymer electrolytes (SPEs) are the key components of lithium metal batteries to overcome the obstacle of insecurity in conventional liquid electrolytes; however, the trade-off between their ionic conductivity and mechanical properties remains a significant challenge. In this work, two-dimensional ZSM-5 nanosheets as fillers are incorporated into a poly(ethylene oxide) (PEO) matrix and lithium salts to obtain composite polymer electrolytes (CPEs). The improved physicochemical and electrochemical properties of the CPE membranes are characterized in full detail. Stripping/plating measurements in symmetric Li/Li cells and cyclic charge/discharge tests are performed to investigate the cyclability and stability of the CPEs. All-solid-state LiFePO4/Li batteries deliver excellent cycling performance with an initial discharge capacity of 152.3 mAh g-1 and 91.4% capacity retention after 200 cycles at 0.2 C, with a discharge specific capacity of 118.8 mAh g-1 remaining after 350 cycles at 0.5 C. Therefore, CPEs containing ZSM-5 nanosheets are a promising option for all-solid-state lithium-ion batteries.
Collapse
Affiliation(s)
| | | | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China; (X.H.); (J.L.)
| |
Collapse
|
5
|
Hu Z, Zhang Y, Fan W, Li X, Huo S, Jing X, Bao W, Zhang Y, Cheng H. Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Lu J, Wang Z, Zhang Q, Sun C, Zhou Y, Wang S, Qiu X, Xu S, Chen R, Wei T. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Qin Z, He X, Xu J, Deng J, Zang X, Yang G, Lu Y, Zou S, Huang L, Chen D. Solid polymer electrolyte membrane based on cationic polynorbornenes with pending imidazolium functional groups for all‐solid‐state lithium‐ion batteries. J Appl Polym Sci 2023. [DOI: 10.1002/app.53601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zengwei Qin
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Xiaohui He
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Jiang Xu
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Jiahao Deng
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Xiujing Zang
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Guoxiao Yang
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Yao Lu
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Shaoyu Zou
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Liang Huang
- School of Physics and Materials Science Nanchang University Nanchang China
| | - Defu Chen
- School of Civil Engineering and Architecture Nanchang University Nanchang China
| |
Collapse
|
8
|
Zou X, Lu Q, Wang C, She S, Liao K, Ran R, Zhou W, An L, Shao Z. A low-overpotential, long-life, and “dendrite-free” lithium-O2 battery realized by integrating “iodide-redox-phobic” and “Li-ion-philic” membrane. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Bao W, Fan W, Luo J, Huo S, Hu Z, Jing X, Chen W, Long X, Zhang Y. Imidazolium-Type Poly(ionic liquid) Endows the Composite Polymer Electrolyte Membrane with Excellent Interface Compatibility for All-Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55664-55673. [PMID: 36475302 DOI: 10.1021/acsami.2c17842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing a poly(ethylene oxide) (PEO)-based polymer electrolyte with high ionic conductivity and robust mechanical property is beneficial for real applications of all-solid-state lithium metal batteries (ASSLMBs). Herein, an excellent organic/inorganic interface compatibility of all-solid-state composite polymer electrolytes (CPEs) is achieved using a novel imidazolium-type poly(ionic liquid) with strong electrostatic interactions, providing insights into the achievement of highly stable CPEs. The key properties such as micromorphologies, thermal behavior, crystallinity, tLi+, mechanical property, lithium anode surficial morphology, and electrochemical performance are systematically investigated. The combined experimental and density functional theory (DFT) simulation results exhibit that the strong electrostatic interaction and ion-dipole interaction cooperated to improve the compatibility of the CPE, with a high ionic conductivity of 1.46 × 10-4 S cm-1 at 40 °C and an incredible mechanical strain of 2000% for dendrite-free and highly stable all-solid-state LMBs. This work affords a promising strategy to accelerate the development of PEO-based polymer electrolytes for real applications in ASSLMBs.
Collapse
Affiliation(s)
- Wei Bao
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Weizhen Fan
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Jin Luo
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Shikang Huo
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Zhenyuan Hu
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Xiao Jing
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Weijie Chen
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Xinyang Long
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Yunfeng Zhang
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| |
Collapse
|