1
|
Wang R, You H, Xie B, Zhang G, Zhu J, Li W, Dong X, Qin Q, Wang M, Ding Y, Tan H, Jia Y, Li Z. Performance analysis of microbial fuel cell - membrane bioreactor with reduced graphene oxide enhanced polypyrrole conductive ceramic membrane: Wastewater treatment, membrane fouling and microbial community under high salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167827. [PMID: 37839487 DOI: 10.1016/j.scitotenv.2023.167827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The application of membrane bioreactor (MBR) in high salinity wastewater treatment was mainly hindered by membrane fouling. Microbial fuel cell (MFC)-MBR coupling system was established to alleviate membrane fouling and save energy. Reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) with high conductivity and stability was innovatively placed in MFC-MBRs as both cathode and filter, with PPy CM, rGO/PPy CM and CM placed in other reactors. MFC-MBR (rGO/PPy) and MFC-MBR (PPy) achieved higher pollutant removal efficiencies (90.73 % and 90.45 % for TOC, 87.22 % and 86.56 % for NH4+-N, respectively) and superior anti-fouling performance (1.86 and 1.93 kPa/d for average membrane fouling rates) than both conventional MBRs (CMBRs). The stable voltage generation was around 287 and 242 mV, respectively. Through high throughput sequencing, electric field showed a positive correlation with the abundance and activity of most dominant phylum (Bacteroidetes, Chloroflexi, Actinobacteria, and Firmicutes) and functional genes (amoA, hao, narG, napA, nirK, norB, and nosZ), thereby improving pollutant removal efficiency. The higher conductivity of rGO/PPy CM resulted in enhanced electric field intensity, leading to superior performance of anti-fouling and pollutant removal. This study inventively explored the effects of conductive membrane property on electricity generation performance, microbial community, pollutant removal and membrane fouling, providing theoretical support for the selection of electrode materials in MFC-MBR.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guoyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Weirun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinan Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Mengying Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Haili Tan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| |
Collapse
|
2
|
Wang R, You H, Li Z, Xie B, Qi S, Zhu J, Qin Q, Wang H, Sun J, Ding Y, Jia Y, Liu F. A novel reduced graphene oxide/polypyrrole conductive ceramic membrane enhanced electric field membrane bioreactor: Mariculture wastewater treatment performance and membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2023; 376:128917. [PMID: 36934909 DOI: 10.1016/j.biortech.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A novel electric field membrane bioreactor (EMBR) for mariculture wastewater treatment utilizing reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) was constructed and compared with MBRs using CM support and rGO/PPy CM. EMBR (rGO/PPy) obtained the highest pollutant removal rates (84.99% for TOC, 85.98% for NH4+-N), the lowest average membrane fouling rate (2.42 kPa/d) and pollutant adhesion performance by characterization. Meanwhile, the specific fluxes of characteristic foulants in EMBR were enhanced, and the total resistances were reduced by 8.12% to 62.46%. The underlying mechanisms included reduced attraction energy and improved electrostatic repulsion between contaminants in EMBR and membrane by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, DLVO model and force analysis. Therefore, this study complemented the understanding of antifouling effect and mechanism in EMBR by interaction energy and force analysis of characteristic pollutants. These findings also provided new insights into the application of EMBR for mariculture wastewater treatment.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shaojie Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Han Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinxu Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen 518055, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Feng Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|