1
|
Chen G, Zhu H, Liu G, Liu G, Jin W. Confinement Effects and Manipulation Strategies of Nanocomposite Membranes towards Molecular Separation. Angew Chem Int Ed Engl 2025; 64:e202418649. [PMID: 39506877 DOI: 10.1002/anie.202418649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Materials featuring well-defined nanoscale channels offer inherent advantages in the selective transport of gases, liquids, and ions, making them pivotal in applications such as molecular separation, catalysis and energy storage. A crucial challenge lies in assembling ordered nanochannel structures and translating these microscopic architectures into macroscopic regular distributions to enhance performance. Nanocomposites provide a promising solution by incorporating nanoscale material (e.g., filler) that significantly enhances macroscale properties of matrix (e.g., polymer). In this review, we spotlight nanocomposite membranes nanocomposite membranes that utilize confinement effects between filler and matrix to precisely control nanochannel apertures, surface properties, and channel distribution for efficient separation of target systems. We discussed the underlying design principles, channel architectures, and strategies for optimizing polymer-filler interfaces and nanochannel manipulation within functional membranes. Emphasis is placed on the fundamental mechanisms of mass transport, and the structure-property-performance relationships within the nanocomposite membranes towards molecular separation. This work aims to provide a comprehensive understanding of how these nanocomposite membranes can be further developed to meet the demands of industrial and environmental applications.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| |
Collapse
|
2
|
Xiao J, Zhu T, Zhang H, Xie W, Dong R, Li Y, Wang X. Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation. Angew Chem Int Ed Engl 2024; 63:e202411270. [PMID: 39048536 DOI: 10.1002/anie.202411270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO2), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities. These membranes exhibit superior ideal selectivity for gas separation compared to other reported ionogel membranes, achieving a CO2/nitrogen selectivity of 61.7 and a CO2/methane selectivity of 24.6, coupled with an acceptable CO2 permeability of 186.4 Barrer. Additionally, these gas separation ionogel membranes can be upcycled into ionic skins for sensing applications, further enhancing their utility. This research outlines a strategic approach to molecularly engineer ionogel membranes, offering a promising pathway for developing sustainable, high-performance materials for advanced gas separation technologies.
Collapse
Affiliation(s)
- Jing Xiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Tengyang Zhu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Haiyang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wei Xie
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
3
|
Mahnaee S, López MJ, Alonso JA. Separation of CO 2/CH 4 gas mixtures using nanoporous graphdiyne and boron-graphdiyne membranes: influence of the pore size. Phys Chem Chem Phys 2024; 26:15916-15926. [PMID: 38805377 DOI: 10.1039/d4cp00872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nanoporous carbon-based membranes have garnered significant interest in gas separation processes owing to their distinct structure and properties. We have investigated the permeation and separation of the mixture of CO2 and CH4 gases through membranes formed by thin layers of porous graphdiyne (GDY) and boron graphdiyne (BGDY) using Density Functional Theory. The main goal is to investigate the effect of the pore size. The interaction of CO2 and CH4 with GDY and BGDY is weak, and this guarantees that those molecules will not be chemically trapped on the surface of the porous membranes. The permeation and separation of CO2 and CH4 through the membranes are significantly influenced by the size of the pores in the layers. The size of the hexagonal pores in BGDY is large in comparison to the size of the two molecules, and the passing of these molecules through the pores is easy because there is no barrier. Then, BGDY is not able to separate CO2 and CH4. In sharp contrast, the size of the triangular pores in GDY is smaller, comparable to the diameter of the two molecules, and this raises an activation barrier for the crossing of the molecules. The height of the barrier for CO2 is one half of that for CH4, the reason being that CO2 is a linear molecule which adopts an orientation perpendicular to the GDY layer to cross the pores, while CH4 has a spherical-like shape, and cannot profit from a favorable orientation. The calculated permeances favor the passing of CO2 through the GDY membrane, and the calculated selectivity for CO2/CH4 mixtures is large. This makes GDY a very promising membrane material for the purification of commercial gases and for the capture of the CO2 component in those gases.
Collapse
Affiliation(s)
- Sahar Mahnaee
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - María J López
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - Julio A Alonso
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Gkotsis P, Peleka E, Zouboulis A. Membrane-Based Technologies for Post-Combustion CO 2 Capture from Flue Gases: Recent Progress in Commonly Employed Membrane Materials. MEMBRANES 2023; 13:898. [PMID: 38132902 PMCID: PMC10744594 DOI: 10.3390/membranes13120898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Carbon dioxide (CO2), which results from fossil fuel combustion and industrial processes, accounts for a substantial part of the total anthropogenic greenhouse gases (GHGs). As a result, several carbon capture, utilization and storage (CCUS) technologies have been developed during the last decade. Chemical absorption, adsorption, cryogenic separation and membrane separation are the most widely used post-combustion CO2 capture technologies. This study reviews post-combustion CO2 capture technologies and the latest progress in membrane processes for CO2 separation. More specifically, the objective of the present work is to present the state of the art of membrane-based technologies for CO2 capture from flue gases and focuses mainly on recent advancements in commonly employed membrane materials. These materials are utilized for the fabrication and application of novel composite membranes or mixed-matrix membranes (MMMs), which present improved intrinsic and surface characteristics and, thus, can achieve high selectivity and permeability. Recent progress is described regarding the utilization of metal-organic frameworks (MOFs), carbon molecular sieves (CMSs), nanocomposite membranes, ionic liquid (IL)-based membranes and facilitated transport membranes (FTMs), which comprise MMMs. The most significant challenges and future prospects of implementing membrane technologies for CO2 capture are also presented.
Collapse
Affiliation(s)
| | | | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Faculty of Sciences, Aristotle University, GR-54124 Thessaloniki, Greece; (P.G.); (E.P.)
| |
Collapse
|
5
|
Younis M, Ahmad S, Atiq A, Amjad Farooq M, Huang MH, Abbas M. Recent Progress in Azobenzene-Based Supramolecular Materials and Applications. CHEM REC 2023; 23:e202300126. [PMID: 37435961 DOI: 10.1002/tcr.202300126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Azobenzene-containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom-up synthesis approach, understandable mechanisms and structural features, and batch-to-batch reproducibility. Azobenzene is a light-responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano- and micro-materials formed from azobenzene-containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host-guest systems, co-assembled, and self-assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene-containing polymers-based supramolecular photoresponsive materials formed through the host-guest approach, polymerization-induced self-assembly, and post-polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene-based supramolecular materials for molecular assembly design, and applications are given.
Collapse
Affiliation(s)
- Muhammad Younis
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Sadia Ahmad
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, 54770, Lahore, Pakistan
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
6
|
Carta M, Antonangelo AR, Jansen JC, Longo M. The Difference in Performance and Compatibility between Crystalline and Amorphous Fillers in Mixed Matrix Membranes for Gas Separation (MMMs). Polymers (Basel) 2023; 15:2951. [PMID: 37447596 DOI: 10.3390/polym15132951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
An increasing number of high-performing gas separation membranes is reported almost on a daily basis, yet only a few of them have reached commercialisation while the rest are still considered pure research outcomes. This is often attributable to a rapid change in the performance of these separation systems over a relatively short time. A common approach to address this issue is the development of mixed matrix membranes (MMMs). These hybrid systems typically utilise either crystalline or amorphous additives, so-called fillers, which are incorporated into polymeric membranes at different loadings, with the aim to improve and stabilise the final gas separation performance. After a general introduction to the most relevant models to describe the transport properties in MMMs, this review intends to investigate and discuss the main advantages and disadvantages derived from the inclusion of fillers of different morphologies. Particular emphasis will be given to the study of the compatibility at the interface between the filler and the matrix created by the two different classes of additives, the inorganic and crystalline fillers vs. their organic and amorphous counterparts. It will conclude with a brief summary of the main findings.
Collapse
Affiliation(s)
- Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| | - Johannes Carolus Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|