1
|
Haflich HM, Singleton JW, Coronell O. Relative contributions of mobility and partitioning to volatile fatty acid flux during electrodialysis. J Memb Sci 2024; 711:123204. [PMID: 39345865 PMCID: PMC11426417 DOI: 10.1016/j.memsci.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Economically valuable volatile fatty acids (VFAs) are sustainably produced via fermentation processes. To use VFAs downstream, they must be recovered using technologies like electrodialysis (ED). Solute transport properties (i.e., partition coefficient (K), diffusion coefficient (D), and permeability (P=KD)) govern flux in ED. Therefore, to advance understanding of VFA flux through anion exchange membranes (AEMs) in ED, we aimed to elucidate the relative contributions of VFA partitioning and mobility to their flux. Accordingly, for VFAs of different sizes (C1-C5) and inorganic anions (Cl-, Br-), we measured their fluxes during ED, permeabilities, and partition coefficients, and calculated the diffusion coefficients. We then evaluated the correlations between flux and transport properties and between transport properties and anion physicochemical properties. Results showed VFA flux had a strong correlation with permeability (R2=0.94, p<0.01), consistent with flux described by the Nernst-Planck equation. Further, while there was a negative correlation between VFA flux and partition coefficient (R2=0.46, p=0.21), there was a positive correlation between VFA flux and diffusion coefficient (R2=0.95, p<0.01) which showed VFA mobility governed VFA flux. We observed a negative correlation between VFA diffusion coefficient and carbon-chain length which was attributed to steric hindrance, and a positive correlation between partition coefficient and carbon chain-length which we attributed to hydrophobicity and polarizability. This work provides fundamental insight on interactions between VFAs and AEMs which affect anion flux during ED.
Collapse
Affiliation(s)
- Holly M Haflich
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Joshua W Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| |
Collapse
|
2
|
Elozeiri AAE, Dykstra JE, Rijnaarts HHM, Lammertink RGH. Multi-component ion equilibria and transport in ion-exchange membranes. J Colloid Interface Sci 2024; 673:971-984. [PMID: 38935981 DOI: 10.1016/j.jcis.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
At the interface between an ion-exchange membrane and a multi-electrolyte solution, charged species redistribute themselves to minimize the free energy of the system. In this paper, we explore the Donnan equilibrium of membranes with quaternary electrolyte (Na+/Mg2+/K+/Ca2+/Cl-) solutions, experimentally. The data was used to calculate the ion activity coefficients for six commercial cation-exchange membranes (CEMs). After setting one of the activity coefficients to an arbitrary value, we used the remaining (N-1) activity coefficients as fitting parameters to describe the equilibrium concentrations of (N) ionic species with a mean relative error of 3 %. At increasing solution ionic strengths, the equivalent ion fractions of monovalent counter-ions inside the membrane increased at the expense of the multivalent ones in alignment with the Donnan equilibrium theory. The fitted activity coefficients were employed in a transport model that simulated a Donnan dialysis experiment involving all four cations simultaneously. The arbitrary value assigned to one activity coefficient affects the calculated Donnan potential at the membrane interface. Nevertheless, this arbitrary value does not affect the prediction of the ion concentrations inside the membrane and consequently does not affect the modeled ion fluxes.
Collapse
Affiliation(s)
- Alaaeldin A E Elozeiri
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Jouke E Dykstra
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Rob G H Lammertink
- Membrane Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
3
|
Huang Y, Fan H, Yip NY. Mobility of Condensed Counterions in Ion-Exchange Membranes: Application of Screening Length Scaling Relationship in Highly Charged Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:836-846. [PMID: 38147509 DOI: 10.1021/acs.est.3c06068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Ion-exchange membranes (IEMs) are widely used in water, energy, and environmental applications, but transport models to accurately simulate ion permeation are currently lacking. This study presents a theoretical framework to predict ionic conductivity of IEMs by introducing an analytical model for condensed counterion mobility to the Donnan-Manning model. Modeling of condensed counterion mobility is enabled by the novel utilization of a scaling relationship to describe screening lengths in the densely charged IEM matrices, which overcame the obstacle of traditional electrolyte chemistry theories breaking down at very high ionic strength environments. Ionic conductivities of commercial IEMs were experimentally characterized in different electrolyte solutions containing a range of mono-, di-, and trivalent counterions. Because the current Donnan-Manning model neglects the mobility of condensed counterions, it is inadequate for modeling ion transport and significantly underestimated membrane conductivities (by up to ≈5× difference between observed and modeled values). Using the new model to account for condensed counterion mobilities substantially improved the accuracy of predicting IEM conductivities in monovalent counterions (to as small as within 7% of experimental values), without any adjustable parameters. Further adjusting the power law exponent of the screen length scaling relationship yielded reasonable precision for membrane conductivities in multivalent counterions. Analysis reveals that counterions are significantly more mobile in the condensed phase than in the uncondensed phase because electrostatic interactions accelerate condensed counterions but retard uncondensed counterions. Condensed counterions still have lower mobilities than ions in bulk solutions due to impedance from spatial effects. The transport framework presented here can model ion migration a priori with adequate accuracy. The findings provide insights into the underlying phenomena governing ion transport in IEMs to facilitate the rational development of more selective membranes.
Collapse
Affiliation(s)
- Yuxuan Huang
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Hanqing Fan
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
| | - Ngai Yin Yip
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027-6623, United States
- Columbia Water Center, Columbia University, New York, New York 10027-6623, United States
| |
Collapse
|
4
|
Pismenskaya N, Rybalkina O, Solonchenko K, Butylskii D, Nikonenko V. Phosphates Transfer in Pristine and Modified CJMA-2 Membrane during Electrodialysis Processing of Na xH (3-x)PO 4 Solutions with pH from 4.5 to 9.9. MEMBRANES 2023; 13:647. [PMID: 37505013 PMCID: PMC10386648 DOI: 10.3390/membranes13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Phosphate recovery from different second streams using electrodialysis (ED) is a promising step to a nutrients circular economy. However, the relatively low ED performance hinders the widespread adoption of this environmentally sound method. The formation of "bonded species" between phosphates and the weakly basic fixed groups (primary and secondary amines) of the anion exchange membrane can be the cause of decrease in current efficiency and increase in energy consumption. ED processing of NaxH(3-x)PO4 alkaline solutions and the use of intense current modes promote the formation of a bipolar junction from negatively charged bound species and positively charged fixed groups. This phenomenon causes a change in the shape of current-voltage curves, increase in resistance, and an enhancement in proton generation during long-term operation of anion-exchange membrane with weakly basic fixed groups. Shielding of primary and secondary amines with a modifier containing quaternary ammonium bases significantly improves ED performance in the recovery of phosphates from NaxH(3-x)PO4 solution with pH 4.5. Indeed, in the limiting and underlimiting current modes, 40% of phosphates are recovered 1.3 times faster, and energy consumption is reduced by 1.9 times in the case of the modified membrane compared to the pristine one. Studies were performed using a new commercial anion exchange membrane CJMA-2.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Dmitrii Butylskii
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
5
|
Pismenskaya N, Rybalkina O, Solonchenko K, Pasechnaya E, Sarapulova V, Wang Y, Jiang C, Xu T, Nikonenko V. How Chemical Nature of Fixed Groups of Anion-Exchange Membranes Affects the Performance of Electrodialysis of Phosphate-Containing Solutions? Polymers (Basel) 2023; 15:polym15102288. [PMID: 37242863 DOI: 10.3390/polym15102288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Innovative ion exchange membranes have become commercially available in recent years. However, information about their structural and transport characteristics is often extremely insufficient. To address this issue, homogeneous anion exchange membranes with the trade names ASE, CJMA-3 and CJMA-6 have been investigated in NaxH(3-x)PO4 solutions with pH 4.4 ± 0.1, 6.6 and 10.0 ± 0.2, as well as NaCl solutions with pH 5.5 ± 0.1. Using IR spectroscopy and processing the concentration dependences of the electrical conductivity of these membranes in NaCl solutions, it was shown that ASE has a highly cross-linked aromatic matrix and mainly contains quaternary ammonium groups. Other membranes have a less cross-linked aliphatic matrix based on polyvinylidene fluoride (CJMA-3) or polyolefin (CJMA-6) and contain quaternary amines (CJMA-3) or a mixture of strongly basic (quaternary) and weakly basic (secondary) amines (CJMA-6). As expected, in dilute solutions of NaCl, the conductivity of membranes increases with an increase in their ion-exchange capacity: CJMA-6 < CJMA-3 << ASE. Weakly basic amines appear to form bound species with proton-containing phosphoric acid anions. This phenomenon causes a decrease in the electrical conductivity of CJMA-6 membranes compared to other studied membranes in phosphate-containing solutions. In addition, the formation of the neutral and negatively charged bound species suppresses the generation of protons by the "acid dissociation" mechanism. Moreover, when the membrane is operated in overlimiting current modes and/or in alkaline solutions, a bipolar junction is formed at the CJMA- 6/depleted solution interface. The CJMA-6 current-voltage curve becomes similar to the well-known curves for bipolar membranes, and water splitting intensifies in underlimiting and overlimiting modes. As a result, energy consumption for electrodialysis recovery of phosphates from aqueous solutions almost doubles when using the CJMA-6 membrane compared to the CJMA-3 membrane.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Evgeniia Pasechnaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Yaoming Wang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chenxiao Jiang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
6
|
Stenina I, Yurova P, Achoh A, Zabolotsky V, Wu L, Yaroslavtsev A. Improvement of Selectivity of RALEX-CM Membranes via Modification by Ceria with a Functionalized Surface. Polymers (Basel) 2023; 15:polym15030647. [PMID: 36771946 PMCID: PMC9919321 DOI: 10.3390/polym15030647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Ion exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed. Heterogeneous RALEX-CM membranes were surface-modified by ceria with a phosphate-functionalized surface. Despite a decrease in ionic conductivity of the prepared composite membranes, their cation transport numbers slightly increase. Moreover, the modified membranes show a threefold increase in Ca2+/Na+ permselectivity (from 2.1 to 6.1) at low current densities.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Polina Yurova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Aslan Achoh
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Zabolotsky
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Liang Wu
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|