1
|
Wang M, Xu R, Liu Y, Wang J, Xu Q, Dai L, Xu H, Zhu Q, Zeng X. Iridium-Catalyzed Asymmetric Allylic Substitution Reaction of 4-Hydroxypyran-2-one. J Org Chem 2023. [PMID: 37133412 DOI: 10.1021/acs.joc.2c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pyranones have raised great concerns owing to their considerable applications in a variety of sectors. However, the development of direct asymmetric allylation of 4-hydroxypyran-2-ones is still restricted. Herein, we present an effective iridium-catalyzed asymmetric functionalization technique for the synthesis of 4-hydroxypyran-2-one derivatives over direct and efficient catalytic asymmetric Friedel-Crafts-type allylation by using allyl alcohols. The allylation products could be obtained with good to high yields (up to 96%) and excellent enantioselectivities (>99% ee). Therefore, the disclosed technique provides a new asymmetric synthetic strategy to explore pyranone derivatives in depth, thus providing an interesting approach for global application and further utilization in organic synthesis and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Meifang Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Ruigang Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Jiaqi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qing Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Linlong Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Haonan Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
2
|
Zhou S, Fatma Z, Xue P, Mishra S, Cao M, Zhao H, Sweedler JV. Mass Spectrometry-Based High-Throughput Quantification of Bioproducts in Liquid Culture. Anal Chem 2023; 95:4067-4076. [PMID: 36790390 DOI: 10.1021/acs.analchem.2c04845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To meet the ever-increasing need for high-throughput screening in metabolic engineering, information-rich, fast screening methods are needed. Mass spectrometry (MS) provides an efficient and general approach for metabolite screening and offers the capability of characterizing a broad range of analytes in a label-free manner, but often requires a range of sample clean-up and extraction steps. Liquid extraction surface analysis (LESA) coupled MS is an image-guided MS surface analysis approach that directly samples and introduces metabolites from a surface to MS. Here, we combined the advantages of LESA-MS and an acoustic liquid handler with stable isotope-labeled internal standards. This approach provides absolute quantitation of target chemicals from liquid culture-dried droplets and enables high-throughput quantitative screening for microbial metabolites. In this study, LESA-MS was successfully applied to quantify several different metabolites (itaconic acid, triacetic acid lactone, and palmitic acid) from different yeast strains in different mediums, demonstrating its versatility, accuracy, and efficiency across a range of microbial engineering applications.
Collapse
Affiliation(s)
- Shuaizhen Zhou
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shekhar Mishra
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Fedin VV, Usachev SA, Obydennov DL, Sosnovskikh VY. Reactions of Trifluorotriacetic Acid Lactone and Hexafluorodehydroacetic Acid with Amines: Synthesis of Trifluoromethylated 4-Pyridones and Aminoenones. Molecules 2022; 27:7098. [PMID: 36296691 PMCID: PMC9610390 DOI: 10.3390/molecules27207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dehydroacetic acid and triacetic acid lactone are known to be versatile substrates for the synthesis of a variety of azaheterocycles. However, their fluorinated analogs were poorly described in the literature. In the present work, we have investigated reactions of trifluorotriacetic acid lactone and hexafluorodehydroacetic acid with primary amines, phenylenediamine, and phenylhydrazine. While hexafluorodehydroacetic acid reacted the same way as non-fluorinated analog giving 2,6-bis(trifluoromethyl)-4-pyridones, trifluorotriacetic acid lactone had different regioselectivity of nucleophilic attack compared to the parent structure, and corresponding 3-amino-6,6,6-trifluoro-5-oxohex-3-eneamides were formed as the products. In the case of binucleophiles, further cyclization took place, forming corresponding benzodiazepine and pyrazoles. The obtained 2,6-bis(trifluoromethyl)-4-pyridones were able to react with active methylene compounds giving fluorinated merocyanine dyes.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Y. Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russia
| |
Collapse
|
4
|
Pelipko VV, Baichurin RI, Lyssenko KA, Dotsenko VV, Makarenko SV. A convenient synthesis of furo[3,2-c]pyran-3-carboxylates from 3-bromo-3-nitroacrylates. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Pryazhnikov DV, Kubrakova IV, Panyukova DI, Maryutina TA. Surface-Modified Iron Oxide as a Sorption Material for the Extraction of Asphaltenes. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
A. Ibrahim M. Chemical Reactivity of 1H-Benzimidazol-2-ylacetonitrile and Dimedone toward Simple Condensates Derived from 3-Formylchromone. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Khademi Z, Heravi MM. Applications of Claisen condensations in total synthesis of natural products. An old reaction, a new perspective. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Chen B, Xie Z, Peng F, Li S, Yang J, Wu T, Fan H, Zhang Z, Hou M, Li S, Liu H, Han B. Production of Piperidine and δ-Lactam Chemicals from Biomass-Derived Triacetic Acid Lactone. Angew Chem Int Ed Engl 2021; 60:14405-14409. [PMID: 33825278 DOI: 10.1002/anie.202102353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Piperidine and δ-Lactam chemicals have wide application, which are currently produced from fossil resource in industry. Production of this kind of chemicals from lignocellulosic biomass is of great importance, but is challenging and the reported routes give low yield. Herein, we demonstrate the strategy to synthesize 2-methyl piperidine (MP) and 6-methylpiperidin-2-one (MPO) from biomass-derived triacetic acid lactone (TAL) that is produced microbially from glucose. In this route, TAL was firstly converted into 4-hydroxy-6-methylpyridin-2(1H)-one (HMPO) through facile aminolysis, subsequently HMPO was selectively transformed into MP or MPO over Ru catalysts supported on beta zeolite (Ru/BEA-X, X is the molar ratio of Si to Al) via the tandem reaction. It was found that the yield of MP could reach 76.5 % over Ru/BEA-60 in t-BuOH, and the yield of MPO could be 78.5 % in dioxane. Systematic studies reveal that the excellent catalytic performance of Ru/BEA-60 was closely correlated with the cooperative effects between active metal and acidic zeolite with large pore geometries. The related reaction pathway was studied on the basis of control experiments.
Collapse
Affiliation(s)
- Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Chen B, Xie Z, Peng F, Li S, Yang J, Wu T, Fan H, Zhang Z, Hou M, Li S, Liu H, Han B. Production of Piperidine and δ‐Lactam Chemicals from Biomass‐Derived Triacetic Acid Lactone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Bae D, Lee J, Jin H, Ryu DH. Bifunctional Urea/Hg(OAc) 2-Mediated Synthesis of 4-Aryl-6-oxycarbonyl-2-pyrones and 2-Pyridones from Dithiomalonate and β,γ-Unsaturated α-Keto Esters. J Org Chem 2021; 86:6001-6014. [PMID: 33819048 DOI: 10.1021/acs.joc.1c00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disubstituted 2-pyrones and 2-pyridones were obtained by bifunctional urea-catalyzed Michael addition/lactonization or lactamization followed by a Hg(OAc)2- or Hg(OAc)2/DBU-mediated hydrolysis/decarboxylation/dehydrogenation process. This one-pot two-stage protocol enabled the rapid synthesis of 4,6-disubstituted 2-pyrones and 2-pyridones from dithiomalonate and β,γ-unsaturated α-keto esters in practical yields under mild reaction conditions. Additionally, the obtained 2-pyridones were facilely transformed to 2,4,6-trisubstituted pyridines in excellent yields.
Collapse
Affiliation(s)
- Daeil Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Juyeol Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hui Jin
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
12
|
A. Ibrahim M, M. El-Gohary N. Construction and Biological Evaluations of Some Novel Chromeno[2,3-b]pyridines and Chromeno[2,3-b]quinolines Using 6-Methylchromone-3-carbonitrile. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
A. Ibrahim M, A. Alnamer Y. Synthetic Approaches for Construction of Novel 3-Heteroarylchromeno[2,3-b]pyridines and Annulated Chromenopyridopyrazolopyrimidines. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Sajjad H, Prebihalo EA, Tolman WB, Reineke TM. Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative. Polym Chem 2021. [DOI: 10.1039/d1py00561h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the synthesis and polymerization of a novel disubstituted valerolactone, β-acetoxy-δ-methylvalerolactone, derived from the renewable feedstock triacetic acid lactone (TAL).
Collapse
Affiliation(s)
- Hussnain Sajjad
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - Emily A. Prebihalo
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St Louis, MO 63130-4899, USA
| | - Theresa M. Reineke
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
15
|
Synthesis and chemical properties of 3-alkoxycarbonylchromones and 3-alkoxalylchromones. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02784-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Douchi T, Akitake M, Sonoda M, Sugiyama Y, Tanimori S. Enantio and diastereoselective total synthesis of all four stereoisomers of germicidin N. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tsuyoshi Douchi
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Masahiro Akitake
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Motohiro Sonoda
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yasumasa Sugiyama
- Department of Food and Health Sciences, Jissen Women’s University, Osakaue, Japan
| | - Shinji Tanimori
- Department of Applied Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
17
|
Reactions of 3-functionalized chromones with triacetic acid lactone. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Ohmukai H, Sugiyama Y, Hirota A, Kirihata M, Tanimori S. Total synthesis of (
S
)‐(+)‐
ent
‐phomapyrones B and surugapyrone B. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Ohmukai
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| | - Yasumasa Sugiyama
- Department of Food and Health SciencesJissen Women's University Hino Tokyo Japan
| | - Akira Hirota
- School of Food and Nutritional SciencesUniversity of Shizuoka Shizuoka Japan
| | - Mitsunori Kirihata
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| | - Shinji Tanimori
- Department of Applied Biological Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture University Osaka Japan
| |
Collapse
|
19
|
Obydennov DL, El-Tantawy AI, Kornev MY, Sosnovskikh VY. Reactions of carbamoylated amino enones with 3-substituted chromones for the preparation of 2-pyridones and chromeno[4,3-b]pyridine-2,5-diones. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|