1
|
Bunin DA, Akasov RA, Martynov AG, Stepanova MP, Monich SV, Tsivadze AY, Gorbunova YG. Pivotal Role of the Intracellular Microenvironment in the High Photodynamic Activity of Cationic Phthalocyanines. J Med Chem 2025; 68:658-673. [PMID: 39688928 DOI: 10.1021/acs.jmedchem.4c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
To investigate the influence of phthalocyanine aggregation on their photodynamic activity, a series of six cationic water-soluble zinc(II) phthalocyanines bearing from four to sixteen 4-((diethylmethylammonium)methyl)phenoxy substituents was synthesized. Depending on their structure, the phthalocyanines have different aggregation behaviors in phosphate buffer solutions ranging from fully assembled to monomeric states. Remarkably, independent of aggregation in buffer, very high photodynamic efficiencies against the tumor cell lines MCF-7 and MDA-MB-231 in the nanomolar range were found for all investigated phthalocyanine, and the IC50(light) varied from 27 to 358 nM (3.5 J/cm2, 660 nm) with IC50(dark)/IC50(light) ratios up to ∼3700. This is due to the intracellular disassembly of aggregated phthalocyanines with the formation of monomeric photoactive forms, as demonstrated by fluorescence microscopy. Indeed, the interaction of aggregated phthalocyanines with serum proteins in a buffer resulted in the disassembly of nonluminescent aggregate species with the release of photoactive monomers bound to protein macromolecules.
Collapse
Affiliation(s)
- Dmitry A Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
| | - Roman A Akasov
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Troubetskaya st., 8, Building 2, Moscow 119991, Russia
| | - Alexander G Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
| | - Maria P Stepanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Pokrovsky Boulevard 11, Moscow 109028, Russia
| | - Svetlana V Monich
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1, Building 3, Moscow 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, Building 4, Moscow 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119071, Russia
| |
Collapse
|
2
|
Zhang Y, Marlow JB, Wood K, Wang J, Warr GG, Li H, Atkin R. Phase behaviour and aggregate structures of the surface-active ionic liquid [BMIm][AOT] in water. J Colloid Interface Sci 2023; 652:749-757. [PMID: 37582670 DOI: 10.1016/j.jcis.2023.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
HYPOTHESIS The surface-active ionic liquid, 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), has a sponge-like bulk nanostructure consisting of percolating polar and apolar domains formed by the ion charge groups and alkyl chains, respectively. We hypothesise that added water will swell the polar domains and change the liquid nanostructure. EXPERIMENTS Small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and polarizing optical microscopy (POM) were used to investigate the nanostructure of [BMIm][AOT] as a function of water content. Differential scanning calorimetry (DSC) was employed to probe the thermal transitions of [BMIm][AOT]-water mixtures and the mobility of water molecules. FINDINGS SAXS, SANS and POM show that at lower water contents, [BMIm][AOT]-water mixtures have a sponge-like nanostructure similar to the pure SAIL, at medium water contents a lamellar phase forms, and at high water contents vesicles form. DSC results reveal that water molecules are supercooled in the lamellar phase. For the first time, results reveal a series of transitions from inverse sponge, to lamellar then to vesicles, for [BMIm][AOT] upon dilution with water.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
3
|
Monocationic Chlorin as a Promising Photosensitizer for Antitumor and Antimicrobial Photodynamic Therapy. Pharmaceutics 2022; 15:pharmaceutics15010061. [PMID: 36678690 PMCID: PMC9863232 DOI: 10.3390/pharmaceutics15010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Despite substantial progress in the understanding of tumor biology, and the appearance of new generations of targeted drugs and treatment techniques, the success achieved in this battle, with some notable exceptions, is still only moderate. Photodynamic therapy (PDT) is a successful but still underestimated therapeutic modality for treating many superficial cancers. In this paper, we focus on the extensive investigation of the monocationic chlorin photosensitizer (PS), considered here as a new photosensitizing agent for both antitumor and antimicrobial PDT. This monocationic chlorin PS (McChl) obtained from methylpheophorbide a (MPh) via a two-step procedure is well soluble in water in the physiological temperature range and forms stable complexes with passive carriers. McChl generates singlet oxygen with a good quantum yield in a lipid-like environment and binds mainly to low- and high-density lipoproteins in a vascular system. A comparison of the photodynamic activity of this agent with the activity of the well-established photosensitizer chlorin e6 (Chl e6) clearly indicates that McChl provides a much more efficient photoinactivation of malignant and microbial cells. The pilot PDT treatment of M1 sarcoma-bearing rats with this PS demonstrates its good potential for further preclinical investigations.
Collapse
|
4
|
Gradova MA, Gradov OV, Lobanov AV, Bychkova AV, Nikolskaya ED, Yabbarov NG, Mollaeva MR, Egorov AE, Kostyukov AA, Kuzmin VA, Khudyaeva IS, Belykh DV. Characterization of a Novel Amphiphilic Cationic Chlorin Photosensitizer for Photodynamic Applications. Int J Mol Sci 2022; 24:ijms24010345. [PMID: 36613788 PMCID: PMC9820311 DOI: 10.3390/ijms24010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.
Collapse
Affiliation(s)
- Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Anton V. Lobanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton E. Egorov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexey A. Kostyukov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir A. Kuzmin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina S. Khudyaeva
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Dmitry V. Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Division of the Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
5
|
Study of acute toxicity of monocationic chlorin e6 derivative, a perspective photosensitizer for antimicrobial and antitumor photodynamic therapy. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2022-11-2-23-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Kustov AV, Morshnev PK, Kukushkina NV, Smirnova NL, Berezin DB, Karimov DR, Shukhto OV, Kustova TV, Belykh DV, Mal’shakova MV, Zorin VP, Zorina TE. Solvation, Cancer Cell Photoinactivation and the Interaction of Chlorin Photosensitizers with a Potential Passive Carrier Non-Ionic Surfactant Tween 80. Int J Mol Sci 2022; 23:ijms23105294. [PMID: 35628108 PMCID: PMC9140634 DOI: 10.3390/ijms23105294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer and drug-resistant superinfections are common and serious problems afflicting millions worldwide. Photodynamic therapy (PDT) is a successful and clinically approved modality used for the management of many neoplastic and nonmalignant diseases. The combination of the light-activated molecules, so-called photosensitizers (PSs), with an appropriate carrier, is proved to enhance PDT efficacy both in vitro and in vivo. In this paper, we focus on the solvation of several potential chlorin PSs in the 1-octanol/phosphate saline buffer biphasic system, their interaction with non-ionic surfactant Tween 80 and photoinactivation of cancer cells. The chlorin conjugates containing d-galactose and l-arginine fragments are found to have a much stronger affinity towards a lipid-like environment compared to ionic chlorins and form molecular complexes with Tween 80 micelles in water with two modes of binding. The charged macrocyclic PSs are located in the periphery of surfactant micelles near hydrophilic head groups, whereas the d-galactose and l-arginine conjugates are deeper incorporated into the micelle structure occupying positions around the first carbon atoms of the hydrophobic surfactant residue. Our results indicate that both PSs have a pronounced affinity toward the lipid-like environment, leading to their preferential binding to low-density lipoproteins. This and the conjugation of chlorin e6 with the tumor-targeting molecules are found to enhance their accumulation in cancer cells and PDT efficacy.
Collapse
Affiliation(s)
- Andrey V. Kustov
- United Physicochemical Centre of Solutions, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 153045 Ivanovo, Russia; (P.K.M.); (N.V.K.); (N.L.S.)
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 153012 Ivanovo, Russia; (D.R.K.); (O.V.S.); (T.V.K.)
- Correspondence: (A.V.K.); (D.B.B.); Tel.: +7-910-999-3789 (A.V.K.)
| | - Philipp K. Morshnev
- United Physicochemical Centre of Solutions, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 153045 Ivanovo, Russia; (P.K.M.); (N.V.K.); (N.L.S.)
| | - Natal’ya V. Kukushkina
- United Physicochemical Centre of Solutions, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 153045 Ivanovo, Russia; (P.K.M.); (N.V.K.); (N.L.S.)
| | - Nataliya L. Smirnova
- United Physicochemical Centre of Solutions, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 153045 Ivanovo, Russia; (P.K.M.); (N.V.K.); (N.L.S.)
| | - Dmitry B. Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 153012 Ivanovo, Russia; (D.R.K.); (O.V.S.); (T.V.K.)
- Correspondence: (A.V.K.); (D.B.B.); Tel.: +7-910-999-3789 (A.V.K.)
| | - Dmitry R. Karimov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 153012 Ivanovo, Russia; (D.R.K.); (O.V.S.); (T.V.K.)
| | - Olga V. Shukhto
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 153012 Ivanovo, Russia; (D.R.K.); (O.V.S.); (T.V.K.)
| | - Tatyana V. Kustova
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 153012 Ivanovo, Russia; (D.R.K.); (O.V.S.); (T.V.K.)
| | - Dmitry V. Belykh
- Institute of Chemistry of the Komi Science Centre of the Ural Branch of Russian Academy of Sciences (ICKSC UB RAS), 167000 Syktyvkar, Russia; (D.V.B.); (M.V.M.)
| | - Marina V. Mal’shakova
- Institute of Chemistry of the Komi Science Centre of the Ural Branch of Russian Academy of Sciences (ICKSC UB RAS), 167000 Syktyvkar, Russia; (D.V.B.); (M.V.M.)
| | - Vladimir P. Zorin
- Department of Biophysics, Belarussian State University (BSU), 220030 Minsk, Belarus; (V.P.Z.); (T.E.Z.)
| | - Tatyana E. Zorina
- Department of Biophysics, Belarussian State University (BSU), 220030 Minsk, Belarus; (V.P.Z.); (T.E.Z.)
| |
Collapse
|
7
|
Kustov AV, Berezin DB, Kruchin SO, Batov DV. Interaction of Macrocyclic Dicationic Photosensitizers with Tween 80. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Synthesis of novel chlorophyll a derivatives bearing glucose moieties and estimation of their photocytotoxic activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Photonics of Viburnum opulus L. Extracts in Microemulsions with Oxygen and Gold Nanoparticles. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, the optical properties of viburnum extract flavonoids in the visible region of the spectrum were investigated and their use as a potential photosensitizer of singlet oxygen for photodynamic therapy was evaluated. The presence of long-lived excited states in the extract molecules was established by spectral methods and time-resolved spectroscopy methods and the dependences of the absorption capacity and luminescence intensity of the extract molecules on the concentrations of oxygen and ablative nanoparticles of the gold in the reverse micelles of AOT (sodium dioctyl sulfosuccinate) were established. The plasmonic enhancement of the luminescence of the extract molecules and the processes of their complexation with oxygen were also established. Furthermore, the rate constants of the processes of conversion of exciting energy in complexes were determined.
Collapse
|