Li J, Chen X, Dong X, Xu Z, Jiang H, Sun X. Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells.
J Gastroenterol Hepatol 2006;
21:1814-1820. [PMID:
17074019 DOI:
10.1111/j.1440-1746.2006.04366.x]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS
Cyclooxygenase-2 (COX-2) is associated with carcinogenesis. The aim of this study was to investigate the expression of COX-2 in four hepatocellular carcinoma (HCC) cell lines, and evaluate the effect of a selective COX-2 inhibitor, meloxicam, in HepG2, a high COX-2 expressing cell line.
METHODS
Expression of COX-2 was detected using RT-PCR, Western blotting and immunohistochemical analysis. Cell proliferation was measured using MTT assay. Cell cycle distribution was determined by flow cytometry. Apoptosis was detected with TUNEL method. Expression of proliferating cell nuclear antigen (PCNA), cell cycle regulatory proteins including cyclins A, B1, D1 and E, and apoptosis-related proteins including Fas, Fas ligand and Bcl-2 were examined using Western blotting.
RESULTS
Cyclooxygenase-2 was intensely expressed in HepG2, HLE and BEL7402 cells, but weakly expressed in SMMC-7402 cells. Meloxicam suppressed proliferation of HepG2 cells in a dose- and time-dependent manner, resulting in cell cycle arrest in S phase and cell accumulation in G0/G1 phase. Expression of PCNA, cyclin A but not cyclin B1, cyclin D1 or cyclin E was down-regulated by meloxicam. Meloxicam also induced apoptosis of HepG2 cells, with increased expression of Fas ligand, but the expression of Fas and Bcl-2 was not affected by meloxicam treatment.
CONCLUSIONS
The present study demonstrates that the specific COX-2 inhibitor meloxicam suppresses proliferation and induces apoptosis in HCC cells that express COX-2, suggesting that COX-2 inhibition may offer a novel chemopreventive and therapeutic approach for HCC.
Collapse