1
|
Vaughn SA, Berghaus LJ, Hart KA. Assessing the effects of ex vivo hormonal exposure on oxidative responses in equine leukocytes: A preliminary study. Vet Immunol Immunopathol 2024; 276:110827. [PMID: 39293133 DOI: 10.1016/j.vetimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Breed differences exist between horses and ponies in circulating concentrations of several hormones, notably ACTH and insulin. These hormones regulate stress and metabolic responses, but in other species, they also impact leukocyte oxidant responses. The effects of these hormones on equine leukocytes have not been evaluated to date. If equine leukocytes are similarly regulated, breed differences in increased plasma hormone concentrations or altered sensitivity to them at the leukocyte level could result in breed-related differences in oxidant responses or oxidative status. The objective of this study was therefore to determine the effects of ex vivo exposure to adrenocorticotropic hormone (ACTH), α-melanocyte stimulating hormone (α-MSH), insulin, or leptin on reactive oxygen species (ROS) production from leukocytes isolated from horses and ponies. We hypothesized that ACTH, α-MSH, insulin, and leptin would alter oxidant responses from equine leukocytes in a breed specific manner. Blood was collected from 10 apparently healthy Quarter horses and seven Welsh ponies for isolation of neutrophils and peripheral blood mononuclear cells (PBMCs) via density gradient centrifugation. Cells were incubated with media (negative control), microbial antigens (positive control), or ACTH, α-MSH, leptin, or insulin for two hours. Induced ROS production was quantified with a previously validated fluorometric assay. Data was compared within groups by comparing a stimulant within a group (horses or ponies) to baseline, between groups by comparing horse response to pony response, and among stimulants using one- and two-way, repeated measures ANOVA (P<0.05). There was no significant effect of breed on basal, microbial-induced, or hormone-induced ROS production from neutrophils (P=0.465) or PBMCs (P=0.749), but in neutrophils, a significant interaction between breed and stimulant was present (P=0.037). ROS production from PBMCs from horses after hormone exposure did not differ from cells exposed to media only (P=0.1520-0.8180). Similarly, neither leptin nor insulin exposure significantly induced ROS production from PBMCs from ponies (P= 0.2645 and 0.4678 respectively), but exposure to ACTH or α-MSH induced a significant increase in ROS production (P=0.0441 and 0.0440 respectively) compared to unstimulated cells. Hormones that vary in availability among breeds may induce ex vivo pro-oxidant responses in equine leukocytes, but specific effects are breed-, leukocyte type-, and hormone-dependent. Breed differences in hormonally induced leukocyte ROS production may warrant further investigation in the context of circulating oxidative stress and how this might relate to future disease risk.
Collapse
Affiliation(s)
- Sarah A Vaughn
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| | - Londa J Berghaus
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Kelsey A Hart
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA, USA.
| |
Collapse
|
2
|
Evaluation of peripheral blood polymorphonuclear cell functions after an oral carbohydrate overload in obese and insulin dysregulated horses. Vet Immunol Immunopathol 2022; 250:110455. [PMID: 35716440 DOI: 10.1016/j.vetimm.2022.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Obesity and insulin dysregulation (ID) are increasingly prevalent conditions in equid populations worldwide. Immune impairment is well described in humans with metabolic dysfunction and is reported but still incompletely understood in horses. This study evaluated the effect of acute induced transient hyperglycemia on apoptosis, phagocytosis and oxidative burst activity of peripheral blood polymorphonuclear cells (PMN) of lean and obese adult horses with or without insulin dysregulation. Seventeen adult horses were allocated into three groups based on their body condition score (BCS) and metabolic status: lean-insulin sensitive (lean-IS), obese-insulin sensitive (obese-IS) and obese-insulin dysregulated (obese-ID). ID was determined by insulin tolerance testing (ITT). Blood glucose elevation was induced through an infeed-oral glucose test (in-feed OGT), and all assessments of PMN functions (apoptosis, phagocytosis and oxidative burst) were done in vitro after isolation from peripheral blood before and 120 min after carbohydrate overload. Results were analyzed using a repeated measures linear mixed model with significance defined at P < 0.05. No differences in apoptosis were observed between experimental groups at any time point. Phagocytic capacity was significantly lower at baseline in the obese-ID group but increased in response to glucose administration when compared to the other two groups. Basal reactive oxygen species production in the obese-IS group differed significantly from the lean-IS and obese-ID groups and decreased significantly in response to glucose administration. Results from this study showed that both metabolic status itself, and oral glucose administration, seem to be factors that alter PMN functionality in horses, specifically phagocytosis and oxidative burst.
Collapse
|
3
|
Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1072. [PMID: 34684109 PMCID: PMC8539411 DOI: 10.3390/medicina57101072] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is an increasingly prevalent chronic metabolic disease characterized by prolonged hyperglycemia that leads to long-term health consequences. It is estimated that impaired healing of diabetic wounds affects approximately 25% of all patients with diabetes mellitus, often resulting in lower limb amputation, with subsequent high economic and psychosocial costs. The hyperglycemic environment promotes the formation of biofilms and makes diabetic wounds difficult to treat. In this review, we present updates regarding recent advances in our understanding of the pathophysiology of diabetic wounds focusing on impaired angiogenesis, neuropathy, sub-optimal chronic inflammatory response, barrier disruption, and subsequent polymicrobial infection, followed by current and future treatment strategies designed to tackle the various pathologies associated with diabetic wounds. Given the alarming increase in the prevalence of diabetes, and subsequently diabetic wounds, it is imperative that future treatment strategies target multiple causes of impaired healing in diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Robert S. Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| |
Collapse
|
4
|
Palomino-Schätzlein M, Simó R, Hernández C, Ciudin A, Mateos-Gregorio P, Hernández-Mijares A, Pineda-Lucena A, Herance JR. Metabolic fingerprint of insulin resistance in human polymorphonuclear leucocytes. PLoS One 2018; 13:e0199351. [PMID: 30005063 PMCID: PMC6044522 DOI: 10.1371/journal.pone.0199351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Abstract
The present study was aimed at determining the metabolic profile of PMNs in obese subjects, and to explore its potential relationship with insulin resistance (IR). To achieve this goal, a pilot clinical study was performed using PMNs from 17 patients with obesity and IR, and 17 lean controls without IR, which was validated in an additional smaller cohort (consisting of 10 patients and 10 controls). PMNs were isolated from peripheral blood and nuclear magnetic resonance was used to perform the metabolomic analysis. A total of 48 metabolites were quantified. The main metabolic change found in PMNs was a significant increase in 2-aminoisobutyric acid with a direct correlation with HOMA-IR (p<0.001), BMI (p<0.000001) and waist circumference (p<0.000001). By contrast, a decrease of 3-hydroxyisovalerate was observed with an inverse correlation with HOMA-IR (p = 0.001), BMI (p = 0.001) and waist circumference (p = 0.0001). Notably, the metabolic profile in plasma was different than that obtained in PMNs. In summary, our results suggest that the change in 3-hydroxyisovalerate and 2-aminoisobutyric is the key metabolic fingerprint in PMNs of obese subjects with IR. In addition, our methodology could be an easy and reliable tool for monitoring the effect of treatments in the setting of precision medicine.
Collapse
Affiliation(s)
- Martina Palomino-Schätzlein
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail: (JRH); (MP); (RS)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
- * E-mail: (JRH); (MP); (RS)
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
| | - Pablo Mateos-Gregorio
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Antonio Pineda-Lucena
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José Raúl Herance
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, CIBERbbn, Barcelona, Spain
- * E-mail: (JRH); (MP); (RS)
| |
Collapse
|
5
|
Dunn JLM, Kartchner LB, Gast K, Sessions M, Hunter RA, Thurlow L, Richardson A, Schoenfisch M, Cairns BA, Maile R. Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. J Leukoc Biol 2018; 103:909-918. [PMID: 29393976 DOI: 10.1002/jlb.3ab0616-251rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial pneumonia is a leading cause of death late after burn injury due to the severe immune dysfunction that follows this traumatic injury. The Mechanistic/Mammalian Target of Rapamycin (mTOR) pathway drives many effector functions of innate immune cells required for bacterial clearance. Studies have demonstrated alterations in multiple cellular processes in patients and animal models following burn injury in which mTOR is a central component. Goals of this study were to (1) investigate the importance of mTOR signaling in antimicrobial activity by neutrophils and (2) therapeutically target mTOR to promote normalization of the immune response. We utilized a murine model of 20% total body surface area burn and the mTOR-specific inhibitor rapamycin. Burn injury led to innate immune hyperresponsiveness in the lung including recruitment of neutrophils with greater ex vivo oxidative activity compared with neutrophils from sham-injured mice. Elevated oxidative function correlated with improved clearance of Pseudomonas aeruginosa, despite down-regulated expression of the bacterial-sensing TLR molecules. Rapamycin administration reversed the burn injury-induced lung innate immune hyperresponsiveness and inhibited enhanced bacterial clearance in burn mice compared with untreated burn mice, resulting in significantly higher mortality. Neutrophil ex vivo oxidative burst was decreased by rapamycin treatment. These data indicate that (1) neutrophil function within the lung is more important than recruitment for bacterial clearance following burn injury and (2) mTOR inhibition significantly impacts innate immune hyperresponsiveness, including neutrophil effector function, allowing normalization of the immune response late after burn injury.
Collapse
Affiliation(s)
- Julia L M Dunn
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurel B Kartchner
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karli Gast
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marci Sessions
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebecca A Hunter
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lance Thurlow
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony Richardson
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark Schoenfisch
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bruce A Cairns
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Maile
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Fejfarová V, Jirkovská A, Dubský M, Game F, Vydláková J, Sekerková A, Franeková J, Kučerová M, Stříž I, Petkov V, Bém R, Wosková V, Němcová A, Skibová J. An Alteration of Lymphocytes Subpopulations and Immunoglobulins Levels in Patients with Diabetic Foot Ulcers Infected Particularly by Resistant Pathogens. J Diabetes Res 2016; 2016:2356870. [PMID: 28050566 PMCID: PMC5165150 DOI: 10.1155/2016/2356870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023] Open
Abstract
The aim of our study was to analyse immune abnormalities in patients with chronic infected diabetic foot ulcers (DFUs) especially those infected by resistant microorganisms. Methods. 68 patients treated in our foot clinic for infected chronic DFUs with 34 matched diabetic controls were studied. Patients with infected DFUs were subdivided into two subgroups according to the antibiotic sensitivity of causal pathogen: subgroup S infected by sensitive (n = 50) and subgroup R by resistant pathogens (n = 18). Selected immunological markers were compared between the study groups and subgroups. Results. Patients with infected chronic DFUs had, in comparison with diabetic controls, significantly reduced percentages (p < 0.01) and total numbers of lymphocytes (p < 0.001) involving B lymphocytes (p < 0.01), CD4+ (p < 0.01), and CD8+ T cells (p < 0.01) and their naive and memory effector cells. Higher levels of IgG (p < 0.05) including IgG1 (p < 0.001) and IgG3 (p < 0.05) were found in patients with DFUs compared to diabetic controls. Serum levels of immunoglobulin subclasses IgG2 and IgG3 correlated negatively with metabolic control (p < 0.05). A trend towards an increased frequency of IgG2 deficiency was found in patients with DFUs compared to diabetic controls (22% versus 15%; NS). Subgroup R revealed lower levels of immunoglobulins, especially of IgG4 (p < 0.01) in contrast to patients infected by sensitive bacteria. The innate immunity did not differ significantly between the study groups. Conclusion. Our study showed changes mainly in the adaptive immune system represented by low levels of lymphocyte subpopulations and their memory effector cells, and also changes in humoral immunity in patients with DFUs, even those infected by resistant pathogens, in comparison with diabetic controls.
Collapse
Affiliation(s)
- Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Jirkovská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frances Game
- Diabetes Unit, Derby Hospitals NHS Foundation Trust, Derby, UK
| | - Jana Vydláková
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Sekerková
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Franeková
- Department of Clinical Biochemistry, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Kučerová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimír Petkov
- Department of Clinical Microbiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bém
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Němcová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jelena Skibová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
7
|
Bosco AM, de Almeida BFM, Pereira PP, Narciso LG, Lima VMF, Ciarlini PC. High concentrations of glucose reduce the oxidative metabolism of dog neutrophils in vitro. BMC Vet Res 2013; 9:24. [PMID: 23388121 PMCID: PMC3568711 DOI: 10.1186/1746-6148-9-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Background Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs. Results The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate. Conclusions A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions.
Collapse
Affiliation(s)
- Anelise M Bosco
- Department of Clinical, Surgery and Animal Reproduction, College of Veterinary Medicine of Araçatuba, São Paulo State University, Araçatuba, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Insulin treatment directly restores neutrophil phagocytosis and bactericidal activity in diabetic mice and thereby improves surgical site Staphylococcus aureus infection. Infect Immun 2012; 80:4409-16. [PMID: 23027538 DOI: 10.1128/iai.00787-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections, including surgical site infections (SSI), are a common and serious complication of diabetes. Staphylococcus aureus, which is eliminated mainly by neutrophils, is a major cause of SSI in diabetic patients. However, the precise mechanisms by which diabetes predisposes to staphylococcal infection are not fully elucidated. The effect of insulin on this infection is also not well understood. We therefore investigated the effect of insulin treatment on SSI and neutrophil function in diabetic mice. S. aureus was inoculated into the abdominal muscle in diabetic db/db and high-fat-diet (HFD)-fed mice with or without insulin treatment. Although the diabetic db/db mice developed SSI, insulin treatment ameliorated the infection. db/db mice had neutrophil dysfunction, such as decreased phagocytosis, superoxide production, and killing activity of S. aureus; however, insulin treatment restored these functions. Ex vivo treatment (coincubation) of neutrophils with insulin and euglycemic control by phlorizin suggest that insulin may directly activate neutrophil phagocytic and bactericidal activity independently of its euglycemic effect. However, insulin may indirectly restore superoxide production by neutrophils through its euglycemic effect. HFD-fed mice with mild hyperglycemia also developed more severe SSI by S. aureus than control mice and had impaired neutrophil phagocytic and bactericidal activity, which was improved by insulin treatment. Unlike db/db mice, in HFD mice, superoxide production was increased in neutrophils and subsequently suppressed by insulin treatment. Glycemic control by insulin also normalized the neutrophil superoxide-producing capability in HFD mice. Thus, insulin may restore neutrophil phagocytosis and bactericidal activity, thereby ameliorating SSI.
Collapse
|
9
|
Revelo X, Waldron M. Effects of in vitro insulin and 2,4-thiazolidinedione on the function of neutrophils harvested from blood of cows in different physiological states. J Dairy Sci 2010; 93:3990-4005. [DOI: 10.3168/jds.2009-2922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/03/2010] [Indexed: 12/19/2022]
|
10
|
Otto NM, Schindler R, Lun A, Boenisch O, Frei U, Oppert M. Hyperosmotic stress enhances cytokine production and decreases phagocytosis in vitro. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R107. [PMID: 18710523 PMCID: PMC2575596 DOI: 10.1186/cc6989] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/21/2008] [Accepted: 08/18/2008] [Indexed: 01/08/2023]
Abstract
Introduction Hyperglycemia is associated with negative outcomes in various settings of critical illness; infectious complications, especially, seem to be increased. On the other hand, intensive insulin therapy (IIT) has been shown to improve outcome in clinical trials. Whether normoglycemia itself or the application of insulin is responsible for the observed findings is unknown. We therefore tested the effect of glucose and insulin on various immune functions in vitro. Methods Human peripheral blood mononuclear cells (PBMCs) were incubated ex vivo with low doses of lipopolysaccharide (LPS). PBMCs were incubated with various osmotic agents, insulin, or a combination of both. Interleukin (IL)-6 and IL-1 cytokine response was measured by enzyme-linked immunosorbent assay. In addition, we investigated the effects of glucose on phagocytosis and oxidative burst in human granulocytes. Results Increasing concentrations of both glucose and mannitol significantly enhanced LPS-induced cytokine production. Insulin alone did not alter cytokine production and had only a minor influence in combination with glucose. Phagocytosis and oxidative burst were significantly reduced with increasing concentrations of glucose and mannitol. Conclusion Hyperglycemia may lead to inflammation by enhancing cytokine production via the direct effects of hyperosmotic stress. Impaired phagocytosis and oxidative burst under hyperglycemia may weaken defense mechanisms of the host. Our in vitro findings may help to explain the beneficial effects of IIT not only in diabetic but also in critically ill patients.
Collapse
Affiliation(s)
- Natalie M Otto
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Stegenga ME, van der Crabben SN, Dessing MC, Pater JM, van den Pangaart PS, de Vos AF, Tanck MW, Roos D, Sauerwein HP, van der Poll T. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med 2008; 25:157-64. [PMID: 18290856 PMCID: PMC2268957 DOI: 10.1111/j.1464-5491.2007.02348.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Type 2 diabetes is frequently associated with infectious complications. Swift activation of leucocytes is important for an adequate immune response. We determined the selective effects of hyperglycaemia and hyperinsulinaemia on lipopolysaccharide (LPS)-induced proinflammatory gene expression and cytokine production in leucocytes and on neutrophil functions. METHODS Six healthy humans were studied on four occasions for 6 h during: (i) lower insulinaemic euglycaemic clamp, (ii) lower insulinaemic hyperglycaemic clamp, (iii) hyperinsulinaemic euglycaemic clamp, and (iv) hyperinsulinaemic hyperglycaemic clamp. Target levels of plasma glucose were 12.0 mmol/l (hyperglycaemic clamps) or 5.0 mmol/l (euglycaemic clamps). Target plasma insulin levels were 400 pmol/l (hyperinsulinaemic clamps) or 100 pmol/l (lower insulinaemic clamps). RESULTS Hyperglycaemia reduced LPS-induced mRNA expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (NFKBIA), interleukin-1 alpha (IL1A) and chemokine (C-C motif) ligand 3 (CCL3), whereas during hyperinsulinaemia enhanced mRNA levels occurred in six out of eight measured inflammation-related genes, irrespective of plasma glucose levels. Combined hyperglycaemia and hyperinsulinaemia led to enhanced IL1A, interleukin-1 beta (IL1B) and CCL3 mRNA levels upon LPS stimulation. Neither hyperglycaemia nor hyperinsulinaemia altered cytokine protein production, neutrophil migration, phagocytic capacity or oxidative burst activity. CONCLUSIONS These results suggest that short-term hyperglycaemia and hyperinsulinaemia influence the expression of several inflammatory genes in an opposite direction, that the acute effects of hyperinsulinaemia on inflammatory mRNA levels may be stronger than those of hyperglycaemia, and that the effects of insulin, in particular, may be relevant in the concurrent presence of hyperglycaemia.
Collapse
Affiliation(s)
- M E Stegenga
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tran HA, Myint E. Fulminant Clostridium Septicum myonecrosis in well controlled diabetes: a case report. J Med Case Rep 2007; 1:119. [PMID: 17967202 PMCID: PMC2173901 DOI: 10.1186/1752-1947-1-119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 10/30/2007] [Indexed: 11/28/2022] Open
Abstract
Diabetic myonecrosis with Clostridium Septicum is uncommon but carries a high mortality rate. This commensal organism is part of the gastrointestinal tract flora and can become extremely virulent, often in the setting of immuno-suppression such as neutropenia, occult malignancy (commonly caecal) and poorly controlled diabetes. The case report is unusual in that there are few risk factors other than very mild neutropenia. This highlights the opportunistic character of the organism and recommends that a high index of suspicion and vigilance be carried out in the presence of fevers and sepsis, even in the well-controlled diabetic population.
Collapse
Affiliation(s)
- Huy A Tran
- Division of Clinical Chemistry Hunter Area Pathology Service, John Hunter Hospital, Locked Bag 1, Hunter Region Mail Centre, Newcastle, New South Wales, Australia 2310.
| | | |
Collapse
|
13
|
Top C, Yildiz S, Oncül O, Qydedi T, Cevikbaş A, Soyogul UG, Cavuşlu S. Phagocytic activity of neutrophils improves over the course of therapy of diabetic foot infections. J Infect 2007; 55:369-73. [PMID: 17675245 DOI: 10.1016/j.jinf.2007.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 12/17/2022]
Abstract
AIMS The aim of this study was to investigate changes in phagocytic activity of neutrophils of type 2 diabetic patients with foot infections over short treatment courses. The potential utility of the phagocytic index in determining the efficacy of treatment modalities and it's relationship with metabolic control parameters were evaluated. METHODS The phagocytic activity of neutrophils was determined in blood samples of 38 type 2 diabetic patients with foot infections (14 women and 24 men). Mean age and mean duration of diabetes were 66.3+/-9.4 and 19.1+/-11.2 (yrs), respectively. All patients received standard treatment (intensive insulin therapy, antibiotherapy, hyperbaric oxygen therapy and surgical debridement). Phagocytic activity of neutrophils was determined by a standard method. Phagocytic activity of neutrophils, acute phase proteins (C-reactive protein) and glycosylated haemoglobin was determined before therapy and two weeks later. RESULTS The phagocytic index before and after therapy were 47.7+/-11.4 and 62.5+/-15.6, respectively (p<0.05). There was a significant correlation between phagocytic index and both CRP and HbA1c (r=0.52, p<0.05 and r=-0.41, p<0.05, respectively). CONCLUSIONS Derangement of carbohydrate metabolism may underlie the impairment of bactericidal activity of neutrophils of poorly controlled diabetic patients. These data reveal that phagocytic activity improves during short-course standard therapy and might enable monitoring of efficacy of treatment modalities in diabetic patients with foot infections.
Collapse
Affiliation(s)
- Cihan Top
- Department of Internal Medicine, Gülhane Military Medical Academy, GATA Haydarpaşa Training Hospital, Tibbiye Cad. 81327 Haydarpaşa, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|