1
|
Ceccarini G, Akinci B, Araujo-Vilar D, Beghini M, Brown RJ, Carrion Tudela J, Corradin V, Donadille B, Jerez Ruiz J, Jeru I, Lattanzi G, Maffei M, McIlroy GD, Nobécourt E, Perez de Tudela N, Rochford JJ, Sanders R, von Schnurbein J, Tews D, Vantyghem MC, Vatier C, Vigouroux C, Santini F. Proceedings of the annual meeting of the European Consortium of Lipodystrophies (ECLip), Pisa, Italy, 28-29 September 2023. ANNALES D'ENDOCRINOLOGIE 2024; 85:308-316. [PMID: 38452868 DOI: 10.1016/j.ando.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Lipodystrophy syndromes are rare diseases primarily affecting the development or maintenance of the adipose tissue but are also distressing indirectly multiple organs and tissues, often leading to reduced life expectancy and quality of life. Lipodystrophy syndromes are multifaceted disorders caused by genetic mutations or autoimmunity in the vast majority of cases. While many subtypes are now recognized and classified, the disease remains remarkably underdiagnosed. The European Consortium of Lipodystrophies (ECLip) was founded in 2014 as a non-profit network of European centers of excellence working in the field of lipodystrophies aiming at promoting international collaborations to increase basic scientific understanding and clinical management of these syndromes. The network has developed a European Patient Registry as a collaborative research platform for consortium members. ECLip and ECLip registry activities involve patient advocacy groups to increase public awareness and to seek advice on research activities relevant from the patients perspective. The annual ECLip congress provides updates on the research results of various network groups members.
Collapse
Affiliation(s)
- Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Baris Akinci
- DEPARK, Dokuz Eylul University & Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey
| | - David Araujo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group. Department of Psychiatry, Radiology, Public Heath, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Marianna Beghini
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan Carrion Tudela
- Spanish Federation for Rare Diseases, Asociación de Familiares y Afectados por Lipodistrofias, Spain
| | | | - Bruno Donadille
- Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Paris, France
| | - Jose Jerez Ruiz
- Spanish Federation for Rare Diseases, Asociación de Familiares y Afectados por Lipodistrofias, Spain
| | - Isabelle Jeru
- Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Sorbonne University, Paris, France; Department of Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière University Hospital, Paris, France
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics « Luigi Luca Cavalli-Sforza » Unit of Bologna, Bologna, Italy; IRCCS Rizzoli Orthopedic Institute, Bologna, Italy
| | - Margherita Maffei
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - George D McIlroy
- The Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK. Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Estelle Nobécourt
- Diabète athérothrombose Océan Indien, Inserm UMR 1188 DéTROI, CHU/Université de La Réunion, 97410 Saint-Pierre, La Réunion
| | - Naca Perez de Tudela
- Spanish Federation for Rare Diseases, Asociación de Familiares y Afectados por Lipodistrofias, Spain
| | - Justin J Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Julia von Schnurbein
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Daniel Tews
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, Metabolism and Nutrition CHU de Lille, Lille, France; Inserm U1190, European Genomic Institute for Diabetes (EGID), Lille University, 59000 Lille, France
| | - Camille Vatier
- Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Paris, France; Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Sorbonne University, Paris, France
| | - Corinne Vigouroux
- Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Paris, France; Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Sorbonne University, Paris, France
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
2
|
Morguetti MJ, Neves PDMDM, Korkes I, Padilha WSC, Jorge LB, Watanabe A, Watanabe EH, Malheiros DMAC, Noronha IDL, Dib SA, Onuchic LF, Moisés RS. Podocytopathies associated with familial partial lipodystrophy due to LMNA variants: report of two cases. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230204. [PMID: 38739524 PMCID: PMC11156176 DOI: 10.20945/2359-4292-2023-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/29/2023] [Indexed: 05/16/2024]
Abstract
Lipodystrophies are characterized by complete or selective loss of adipose tissue and can be acquired or inherited. Familial partial lipodystrophy (FPLD) is a hereditary lipodystrophy commonly caused by mutations in the LMNA gene. Herein, we report two cases of FPLD associated with podocytopathies. Patient 1 was diagnosed with FPLD associated with the heterozygous p.Arg482Trp variant in LMNA and had normal glucose tolerance and hyperinsulinemia. During follow-up, she developed nephroticrange proteinuria. Renal biopsy was consistent with minimal change disease. Patient 2 was diagnosed with FPLD associated with a de novo heterozygous p.Arg349Trp variant in LMNA. Microalbuminuria progressed to macroalbuminuria within 6 years and tonephrotic range proteinuria in the last year. He remained without diabetes and with hyperinsulinemia. Renal biopsy revealed focal segmental glomerulosclerosis not otherwise specified. This report provides further evidence of variable features of lipodystrophy associated with LMNA variants and the importance of long-term follow-up with evaluation of kidney dysfunction.
Collapse
Affiliation(s)
- Maria Julia Morguetti
- Divisão de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Ilana Korkes
- Divisão de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Lectícia Barbosa Jorge
- Divisão de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Andreia Watanabe
- Divisões de Nefrologia Pediátrica e Medicina Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Elieser Hitoshi Watanabe
- Divisões de Nefrologia e Medicina Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | - Sergio Atala Dib
- Divisão de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Luiz Fernando Onuchic
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Regina S Moisés
- Divisão de Endocrinologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil,
| |
Collapse
|
3
|
Magno S, Ceccarini G, Corvillo F, Pelosini C, Gilio D, Paoli M, Fornaciari S, Pandolfo G, Sanchez-Iglesias S, Nozal P, Curcio M, Sessa MR, López-Trascasa M, Araújo-Vilar D, Santini F. Clinical Characteristics of Patients With Acquired Partial Lipodystrophy: A Multicenter Retrospective Study. J Clin Endocrinol Metab 2024; 109:e932-e944. [PMID: 38061004 DOI: 10.1210/clinem/dgad700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Barraquer-Simons syndrome (BSS) is a rare, acquired form of lipodystrophy characterized by progressive loss of upper body subcutaneous fat, which affects face, upper limbs, and trunk. The pathogenesis of the disease is not entirely known and may involve autoimmune mechanisms. AIM This study aimed to provide a comprehensive picture of the clinical, immunological, and metabolic features of a large cohort of patients with BSS. Our primary objectives included the validation of existing diagnostic tools, the evaluation of novel diagnostic approaches, and the exploration of potential disease triggers or genetic predispositions. SUBJECTS AND METHODS Twenty-six patients were diagnosed with BSS based on accepted criteria defined by international guidelines. Anthropometric parameters, biochemical tests, organ- and non-organ-specific autoantibodies, HLA status, and screening of the LMNB2 gene were performed. RESULTS Patients were predominantly females (73%); fat loss occurred mostly during childhood (77%) at a median age of 8 years. Among various anthropometric measures, the ratio between the proportion of fat mass in upper limbs and lower limbs showed the best predictive value for diagnosis. A total of 11.5% of patients had diabetes, 34.6% dyslipidemia, and 26.9% hepatic steatosis. Seventy-five percent of children and 50% of adults had C3 hypocomplementemia; 76% of patients were positive for 1 or more autoantibodies. HLA-DRB1 11:03 had higher allelic frequencies compared with the general population. A single variant in the LMNB2 gene was found in 1 patient. CONCLUSION BSS has a childhood onset and is often associated with autoimmune diseases. Skinfold thickness measurements and fat assessment by dual energy X-ray absorptiometry are useful tools to identify the disease. C3 hypocomplementemia and the presence of autoantibodies may be used as additional diagnostic supportive criteria but the prevalence of C3 hypocomplementemia may be lower than previously reported.
Collapse
Affiliation(s)
- Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, Madrid 28046, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28046, Spain
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Melania Paoli
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Silvia Fornaciari
- Division of Transfusion Medicine and Transplant Biology, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Giuseppe Pandolfo
- Department of Economics and Statistics, University of Naples Federico II, Naples 80138, Italy
| | - Sofia Sanchez-Iglesias
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela 15700, Spain
| | - Pilar Nozal
- Immunology Unit, La Paz University Hospital, Madrid 28046, Spain
| | - Michele Curcio
- Division of Transfusion Medicine and Transplant Biology, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Maria Rita Sessa
- Chemistry and Endocrinology Laboratory, Department of Radiological, Nuclear and Laboratory Medicine, University Hospital of Pisa, Pisa 56124, Italy
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Paseo de la Castellana, Madrid 28046, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit (U.E.T.eM.), Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS-IDIS), School of Medicine, Universidad de Santiago de Compostela, Santiago de Compostela 15700, Spain
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| |
Collapse
|
4
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
5
|
Rochford JJ. When Adipose Tissue Lets You Down: Understanding the Functions of Genes Disrupted in Lipodystrophy. Diabetes 2022; 71:589-598. [PMID: 35316838 DOI: 10.2337/dbi21-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Lipodystrophy syndromes are conditions in which the adipose tissue mass of an individual is altered inappropriately. The change in adipose mass can range from a relatively modest and subtle redistribution in some individuals with partial lipodystrophy to a near-complete absence of adipose tissue in the most severe forms of generalized lipodystrophy. The common feature is a disconnection between the need of the individual for a safe, healthy lipid storage capacity and the available adipose mass to perform this critical role. The inability to partition lipids for storage in appropriately functioning adipocytes leads to lipid accumulation in other tissues, which typically results in conditions such as diabetes, dyslipidemia, fatty liver, and cardiovascular disease. Several genes have been identified whose disruption leads to inherited forms of lipodystrophy. There is a link between some of these genes and adipose dysfunction, so the molecular basis of disease pathophysiology appears clear. However, for other lipodystrophy genes, it is not evident why their disruption should affect adipose development or function or, in the case of partial lipodystrophy, why only some adipose depots should be affected. Elucidating the molecular functions of these genes and their cellular and physiological effects has the capacity to uncover fundamental new insights regarding the development and functions of adipose tissue. This information is also likely to inform better management of lipodystrophy and improved treatments for patients. In addition, the findings will often be relevant to other conditions featuring adipose tissue dysfunction, including the more common metabolic disease associated with obesity.
Collapse
|
6
|
Akinci G, Celik M, Akinci B. Complications of lipodystrophy syndromes. Presse Med 2021; 50:104085. [PMID: 34728268 DOI: 10.1016/j.lpm.2021.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022] Open
Abstract
Lipodystrophy syndromes are rare complex multisystem disorders caused by generalized or partial lack of adipose tissue. Adipose tissue dysfunction in lipodystrophy is associated with leptin deficiency. Lipodystrophy leads to severe metabolic problems. These abnormalities include, but are not limited to, insulin-resistant diabetes, severe hypertriglyceridemia, and lipid accumulation in ectopic organs such as the liver, and are associated with end-organ complications. Metabolic abnormalities can be present at the time of diagnosis or may develop over time as the disease progresses. In addition to metabolic abnormalities, subtype-specific presentations due to underlying molecular etiology in genetic forms and autoimmunity in acquired forms contribute to severe morbidity in lipodystrophy.
Collapse
Affiliation(s)
- Gulcin Akinci
- Division of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Merve Celik
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
7
|
Ceccarini G, Magno S, Gilio D, Pelosini C, Santini F. Autoimmunity in lipodystrophy syndromes. Presse Med 2021; 50:104073. [PMID: 34547374 DOI: 10.1016/j.lpm.2021.104073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Lipodystrophy syndromes are rare, heterogeneous disorders characterized by the complete or partial deficiency of adipose tissue and are classified according to the extent of fat loss in generalized or partial subtypes, or based on the pathogenic mechanisms in genetic or acquired. While in most cases of congenital forms of lipodystrophy a genetic alteration can be identified, the pathogenic mechanisms responsible for the acquired diseases are not fully clarified. Based on the evidence of a positive association between most acquired lipodystrophies and autoimmune disorders including immune mediated alterations in the adipose tissue of patients affected by acquired lipodystrophy, a reaction against white adipose tissue antigens is postulated. Recent acquisitions have shed new light on the possible pathogenic mechanisms and identified novel forms of acquired lipodystrophy which are possibly immune-mediated. The aim of this review is to give an update on acquired lipodystrophies describing pathogenic mechanisms involved and the relationships between acquired lipodystrophies and other autoimmune disorders. Larger studies based on international disease registries are needed to collect accurate information on the prevalence, risk factors, genetic predisposition, natural history, disease markers and treatment efficacy of these ultrarare disorders.
Collapse
Affiliation(s)
- Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory at University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
8
|
Altay C, Seçil M, Adıyaman SC, Saydam BÖ, Demir T, Akıncı G, Simsir IY, Eren E, Keskin ET, Demir L, Onay H, Topaloğlu H, Yürekli BS, Kutbay NÖ, Gen R, Akıncı B. Magnetic resonance spectroscopy to assess hepatic steatosis in patients with lipodystrophy. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2020; 31:588-595. [PMID: 32915147 PMCID: PMC7498187 DOI: 10.5152/tjg.2020.19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Lipodystrophy is a rare metabolic disorder characterized by near total or partial lack of subcutaneous adipose tissue and associated with insulin resistance. We aimed to evaluate the efficacy of magnetic resonance spectroscopy imaging (MRS) to explore the fat content of the liver in patients with lipodystrophy and to determine the relationship between the liver fat accumulation and clinical presentations of lipodystrophy. MATERIALS AND METHODS Between July 2014 and February 2016, 34 patients with lipodystrophy were assessed by MRS for quantification of hepatic steatosis. All patients had metabolic abnormalities associated with insulin resistance. Metabolic parameters and the MRS findings were analyzed to identify potential correlations between the liver fat content and disease severity. RESULTS The MRS fat ratios (MRS-FR) were markedly higher, indicating severe hepatic steatosis in lipodystrophy. Patients with generalized and partial lipodystrophy had comparable levels of MRS-FRs, although patients with generalized lipodystrophy were significantly younger. Patients with genetically based lipodystrophy had elevated MRS-FR compared to those with acquired lipodystrophy (p=0.042). The MRS-FR was positively correlated with liver enzyme alanine aminotransferase (p=0.028) and serum adiponectin (p=0.043). CONCLUSION Our data suggest that MRS might be an effective, noninvasive imaging method to quantify hepatic fat content in patients with lipodystrophy. Further studies are needed to validate the technique and threshold values which would allow accurate comparison of data acquired by different machines and centers.
Collapse
Affiliation(s)
- Canan Altay
- Department of Radiology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | - Mustafa Seçil
- Department of Radiology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | | | - Başak Özgen Saydam
- Division of Endocrinology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | - Tevfik Demir
- Division of Endocrinology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | - Gülçin Akıncı
- Division of Pediatric Neurology, Dr. Behcet Uz Children’s’ Hospital, İzmir, Turkey
| | | | - Erdal Eren
- Division of Pediatric Endocrinology, Uludag University School of Medicine, Bursa, Turkey
| | - Ela Temeloğlu Keskin
- Division of Endocrinology, İstanbul University School of Medicine, İstanbul, Turkey
| | - Leyla Demir
- Department of Biochemistry, Ataturk Training and Research Hospital, İzmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetics, Ege University School of Medicine, İzmir, Turkey
| | - Haluk Topaloğlu
- Division of Pediatric Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Banu Sarer Yürekli
- Division of Endocrinology, Ege University School of Medicine, İzmir, Turkey
| | | | - Ramazan Gen
- Division of Endocrinology, Mersin University School of Medicine, Mersin, Turkey
| | - Barış Akıncı
- Division of Endocrinology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| |
Collapse
|
9
|
Özen S, Akıncı B, Oral EA. Current Diagnosis, Treatment and Clinical Challenges in the Management of Lipodystrophy Syndromes in Children and Young People. J Clin Res Pediatr Endocrinol 2020; 12:17-28. [PMID: 31434462 PMCID: PMC7127888 DOI: 10.4274/jcrpe.galenos.2019.2019.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipodystrophy is a heterogeneous group of disorders characterized by lack of body fat in characteristic patterns, which can be genetic or acquired. Lipodystrophy is associated with insulin resistance that can develop in childhood and adolescence, and usually leads to severe metabolic complications. Diabetes mellitus, hypertriglyceridemia, and hepatic steatosis ordinarily develop in these patients, and most girls suffer from menstrual abnormalities. Severe complications develop at a relatively young age, which include episodes of acute pancreatitis, renal failure, cirrhosis, and complex cardiovascular diseases, and all of these are associated with serious morbidity. Treatment of lipodystrophy consists of medical nutritional therapy, exercise, and the use of anti-hyperglycemic and lipid-lowering agents. New treatment modalities, such as metreleptin replacement, promise much in the treatment of metabolic abnormalities secondary to lipodystrophy. Current challenges in the management of lipodystrophy in children and adolescents include, but are not limited to: (1) establishing specialized centers with experience in providing care for lipodystrophy presenting in childhood and adolescence; (2) optimizing algorithms that can provide some guidance for the use of standard and novel therapies to ensure adequate metabolic control and to prevent complications; (3) educating patients and their parents about lipodystrophy management; (4) improving patient adherence to chronic therapies; (5) reducing barriers to access to novel treatments; and (5) improving the quality of life of these patients and their families.
Collapse
Affiliation(s)
- Samim Özen
- Ege University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Ege University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 390 12 30 E-mail:
| | - Barış Akıncı
- Dokuz Eylül University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, İzmir, Turkey,University of Michigan Medical School, Department of Medicine, and Brehm Center for Diabetes, Division of Metabolism, Endocrinology, and Diabetes, Michigan, USA
| | - Elif A. Oral
- University of Michigan Medical School, Department of Medicine, and Brehm Center for Diabetes, Division of Metabolism, Endocrinology, and Diabetes, Michigan, USA
| |
Collapse
|
10
|
Foss-Freitas MC, Akinci B, Luo Y, Stratton A, Oral EA. Diagnostic strategies and clinical management of lipodystrophy. Expert Rev Endocrinol Metab 2020; 15:95-114. [PMID: 32368944 DOI: 10.1080/17446651.2020.1735360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Introduction: Lipodystrophy is a heterogeneous group of rare diseases characterized by various degrees of fat loss which leads to serious morbidity due to metabolic abnormalities associated with insulin resistance and subtype-specific clinical features associated with underlying molecular etiology.Areas covered: This article aims to help physicians address challenges in diagnosing and managing lipodystrophy. We systematically reviewed the literature on PubMed and Google Scholar databases to summarize the current knowledge in lipodystrophy management.Expert opinion: Adipose tissue is a highly active endocrine organ that regulates metabolic homeostasis in the human body through a comprehensive communication network with other organ systems such as the central nervous system, liver, digestive system, and the immune system. The adipose tissue is capable of producing and secreting numerous factors with important endocrine functions such as leptin that regulates energy homeostasis. Recent developments in the field have helped to solve some of the mysteries behind lipodystrophy that allowed us to get a better understanding of adipocyte function and differentiation. From a clinical standpoint, physicians who suspect lipodystrophy should distinguish the disease from several others that may present with similar clinical features. It is also important for physicians to carefully interpret clinical features, laboratory, and imaging results before moving to more sophisticated tests and making decisions about therapy.
Collapse
Affiliation(s)
- Maria C Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ribeirao Preto Medical School, Sao Paulo University, Ribeirao Preto, Brazil
| | - Baris Akinci
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Yingying Luo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | | | - Elif A Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Corvillo F, Akinci B. An overview of lipodystrophy and the role of the complement system. Mol Immunol 2019; 112:223-232. [PMID: 31177059 DOI: 10.1016/j.molimm.2019.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
The complement system is a major component of innate immunity playing essential roles in the destruction of pathogens, the clearance of apoptotic cells and immune complexes, the enhancement of phagocytosis, inflammation, and the modulation of adaptive immune responses. During the last decades, numerous studies have shown that the complement system has key functions in the biology of certain tissues. For example, complement contributes to normal brain and embryonic development and to the homeostasis of lipid metabolism. However, the complement system is subjected to the effective balance between activation-inactivation to maintain complement homeostasis and to prevent self-injury to cells or tissues. When this control is disrupted, serious pathologies eventually develop, such as C3 glomerulopathy, autoimmune conditions and infections. Another heterogeneous group of ultra-rare diseases in which complement abnormalities have been described are the lipodystrophy syndromes. These diseases are characterized by the loss of adipose tissue throughout the entire body or partially. Complement over-activation has been reported in most of the patients with acquired partial lipodystrophy (also called Barraquer-Simons Syndrome) and in some cases of the generalized variety of the disease (Lawrence Syndrome). Even so, the mechanism through which the complement system induces adipose tissue abnormalities remains unclear. This review focuses on describing the link between the complement system and certain forms of lipodystrophy. In addition, we present an overview regarding the clinical presentation, differential diagnosis, classification, and management of patients with lipodystrophy associated with complement abnormalities.
Collapse
Affiliation(s)
- F Corvillo
- Complement Research Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.
| | - B Akinci
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey; Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| |
Collapse
|
13
|
Oral EA, Gorden P, Cochran E, Araújo-Vilar D, Savage DB, Long A, Fine G, Salinardi T, Brown RJ. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. Endocrine 2019; 64:500-511. [PMID: 30805888 PMCID: PMC7340120 DOI: 10.1007/s12020-019-01862-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the effects of metreleptin in patients with partial lipodystrophy (PL). METHODS Patients aged ≥ 6 months with PL, circulating leptin < 12.0 ng/mL, and diabetes mellitus, insulin resistance, or hypertriglyceridemia received metreleptin doses (once or twice daily) titrated to a mean of 0.124 mg/kg/day. Changes from baseline to month 12 in glycated hemoglobin (HbA1c) and fasting serum triglycerides (TGs; co-primary endpoints), fasting plasma glucose (FPG), and liver volume were evaluated. Additional assessments included the proportions of patients achieving target decreases in HbA1c or fasting TGs at month 12, long-term treatment effects, and treatment-emergent adverse events (TEAEs). RESULTS Significant (p < 0.05) reductions in HbA1c (-0.6%), fasting TGs (-20.8%), FPG (-1.2 mmol/L), and liver volume (-13.4%) were observed in the overall PL population at month 12. In a subgroup of patients with baseline HbA1c ≥ 6.5% or TGs ≥ 5.65 mmol/L, significant (p < 0.05) reductions were seen in HbA1c (-0.9%), fasting TGs (-37.4%), FPG (-1.9 mmol/L), and liver volume (-12.4%). In this subgroup, 67.9% of patients had a ≥ 1% decrease in HbA1c or ≥ 30% decrease in fasting TGs, and 42.9% had a ≥ 2% decrease in HbA1c or ≥ 40% decrease in fasting TGs. Long-term treatment in this subgroup led to significant (p < 0.05) reductions at months 12, 24, and 36 in HbA1c, fasting TGs, and FPG. Metreleptin was well tolerated with no unexpected safety signals. The most common TEAEs were abdominal pain, hypoglycemia, and nausea. CONCLUSIONS In patients with PL, treatment with metreleptin was well tolerated and resulted in improvements in glycemic control, hypertriglyceridemia, and liver volume.
Collapse
Affiliation(s)
- Elif A Oral
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.
| | - Phillip Gorden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Araújo-Vilar
- Department of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - David B Savage
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Alison Long
- Aegerion Pharmaceuticals, Cambridge, MA, USA
| | | | | | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Ozgen Saydam B, Sonmez M, Simsir IY, Erturk MS, Kulaksizoglu M, Arkan T, Hekimsoy Z, Cavdar U, Akinci G, Demir T, Altay CT, Mihci E, Secil M, Akinci B. A subset of patients with acquired partial lipodystrophy developing severe metabolic abnormalities. Endocr Res 2019; 44:46-54. [PMID: 30182761 DOI: 10.1080/07435800.2018.1513029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Purpose/Aim of the study: Acquired partial lipodystrophy (APL) is a rare disease characterized by selective loss of adipose tissue. In this study, we aimed to present a subset of patients with APL, who developed severe metabolic abnormalities, from our national lipodystrophy registry. MATERIALS AND METHODS Severe metabolic abnormalities were defined as: poorly controlled diabetes (HbA1c above 7% despite treatment with insulin more than 1 unit/kg/day combined with oral antidiabetics), severe hypertriglyceridemia (triglycerides above 500 mg/dL despite treatment with lipid-lowering drugs), episodes of acute pancreatitis, or severe hepatic involvement (biopsy-proven non-alcoholic steatohepatitis (NASH)). RESULTS Among 140 patients with all forms of lipodystrophy (28 with APL), we identified 6 APL patients with severe metabolic abnormalities. The geometric mean for age was 37 years (range: 27-50 years; 4 females and 2 males). Five patients had poorly controlled diabetes despite treatment with high-dose insulin combined with oral antidiabetics. Severe hypertriglyceridemia developed in five patients, of those three experienced episodes of acute pancreatitis. Although all six patients had hepatic steatosis at various levels on imaging studies, NASH was proven in two patients on liver biopsy. Our data suggested that APL patients with severe metabolic abnormalities had a more advanced fat loss and longer disease duration. CONCLUSIONS We suggest that these patients represent a potential subgroup of APL who may benefit from metreleptin or investigational therapies as standard treatment strategies fail to achieve a good metabolic control.
Collapse
Affiliation(s)
- Basak Ozgen Saydam
- a Division of Endocrinology and Metabolism , Dokuz Eylul University, Izmir
| | - Melda Sonmez
- b Department of Internal Medicine, Koc University, School of Medicine, Istanbul
| | | | | | - Mustafa Kulaksizoglu
- e Division of Endocrinology and Metabolism , Necmettin Erbakan University, Konya
| | - Tugba Arkan
- f Division of Endocrinology and Metabolism , Kocaeli Training Hospital, Kocaeli
| | - Zeliha Hekimsoy
- g Division of Endocrinology and Metabolism , Celal Bayar University, Manisa
| | - Umit Cavdar
- a Division of Endocrinology and Metabolism , Dokuz Eylul University, Izmir
| | - Gulcin Akinci
- h Division of Pediatric Neurology , Behcet Uz Pediatric Children's Hospital, Izmir
| | - Tevfik Demir
- a Division of Endocrinology and Metabolism , Dokuz Eylul University, Izmir
| | | | - Ercan Mihci
- j Division of Pediatric Genetics , Akdeniz University, Antalya
| | - Mustafa Secil
- i Department of Radiology , Dokuz Eylul University, Izmir
| | - Baris Akinci
- a Division of Endocrinology and Metabolism , Dokuz Eylul University, Izmir
| |
Collapse
|
15
|
Ozdemir Kutbay N, Sarer Yurekli B, Yasar Z, Akinci B. AN UNUSUAL CASE OF ACQUIRED PARTIAL LIPODYSTROPHY PRESENTING WITH ACANTHOSIS NIGRICANS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; -5:129-130. [PMID: 31149072 PMCID: PMC6535316 DOI: 10.4183/aeb.2019.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
About 250 patients with acquired partial lipodystrophy (Barraquer-Simons) syndrome have been reported so far. It is characterized by the loss of adipose tissue from the face and upper extremities, and accumulated fat in the rest of the body. The disease usually starts in females during childhood or adolescence, and usually after a febrile illness. Fat loss often comes into view in months or years. We present a 23-year-old female patient with acquired partial lipodystrophy , which is rarely seen.
Collapse
Affiliation(s)
- N. Ozdemir Kutbay
- Celal Bayar University, Faculty of Medicine, Division of Endocrinology and Metabolism, Manisa, Izmir, Turkey
| | | | - Z. Yasar
- Selahaddin Eyyubi State Hospital, Diyarbakir, Turkey
| | - B. Akinci
- Dokuz Eylul University - Division of Endocrinology, Izmir, Turkey
| |
Collapse
|
16
|
Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: a step-by-step approach. J Endocrinol Invest 2019; 42:61-73. [PMID: 29704234 PMCID: PMC6304182 DOI: 10.1007/s40618-018-0887-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
AIM Lipodystrophy syndromes are rare heterogeneous disorders characterized by deficiency of adipose tissue, usually a decrease in leptin levels and, frequently, severe metabolic abnormalities including diabetes mellitus and dyslipidemia. PURPOSE To describe the clinical presentation of known types of lipodystrophy, and suggest specific steps to recognize, diagnose and treat lipodystrophy in the clinical setting. METHODS Based on literature and in our own experience, we propose a stepwise approach for diagnosis of the different subtypes of rare lipodystrophy syndromes, describing its more frequent co-morbidities and establishing the therapeutical approach. RESULTS Lipodystrophy is classified as genetic or acquired and by the distribution of fat loss, which can be generalized or partial. Genes associated with many congenital forms of lipodystrophy have been identified that may assist in diagnosis. Because of its rarity and heterogeneity, lipodystrophy may frequently be unrecognized or misdiagnosed, which is concerning because it is progressive and its complications are potentially life threatening. A basic diagnostic algorithm is proposed. Effective management of lipodystrophy includes lifestyle changes and aggressive, evidence-based treatment of comorbidities. Leptin replacement therapy (metreleptin) has been found to improve metabolic parameters in many patients with lipodystrophy. Metreleptin is approved in the United States as replacement therapy to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy and has been submitted for approval in Europe. CONCLUSIONS Here, we describe the clinical presentation of known types of lipodystrophy, present an algorithm for differential diagnosis of lipodystrophy, and suggest specific steps to recognize and diagnose lipodystrophy in the clinical setting.
Collapse
Affiliation(s)
- D Araújo-Vilar
- UETeM-Molecular Pathology Group, Institute of Biomedical Research (CIMUS), School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - F Santini
- Endocrinology Unit, Obesity Center, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Akinci B, Meral R, Oral EA. Phenotypic and Genetic Characteristics of Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and Comorbidities. Curr Diab Rep 2018; 18:143. [PMID: 30406415 DOI: 10.1007/s11892-018-1099-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article focuses on recent progress in understanding the genetics of lipodystrophy syndromes, the pathophysiology of severe metabolic abnormalities caused by these syndromes, and causes of severe morbidity and a possible signal of increased mortality associated with lipodystrophy. An updated classification scheme is also presented. RECENT FINDINGS Lipodystrophy encompasses a group of heterogeneous rare diseases characterized by generalized or partial lack of adipose tissue and associated metabolic abnormalities including altered lipid metabolism and insulin resistance. Recent advances in the field have led to the discovery of new genes associated with lipodystrophy and have also improved our understanding of adipose biology, including differentiation, lipid droplet assembly, and metabolism. Several registries have documented the natural history of the disease and the serious comorbidities that patients with lipodystrophy face. There is also evolving evidence for increased mortality rates associated with lipodystrophy. Lipodystrophy syndromes represent a challenging cluster of diseases that lead to severe insulin resistance, a myriad of metabolic abnormalities, and serious morbidity. The understanding of these syndromes is evolving in parallel with the identification of novel disease-causing mechanisms.
Collapse
Affiliation(s)
- Baris Akinci
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| | - Elif Arioglu Oral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
18
|
Altay C, Seçil M, Demir T, Atik T, Akıncı G, Özdemir Kutbay N, Keskin Temeloğlu E, Yıldırım Şimşir I, Özışık S, Demir L, Eren E, Tuna EB, Aytaç H, Onay H, Akıncı B. Determining residual adipose tissue characteristics with MRI in patients with various subtypes of lipodystrophy. Diagn Interv Radiol 2018; 23:428-434. [PMID: 29044029 DOI: 10.5152/dir.2017.17019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE We aimed to investigate residual adipose tissue with whole-body magnetic resonance imaging to differentiate between subtypes of lipodystrophy. METHODS A total of 32 patients (12 with congenital generalized lipodystrophy [CGL], 1 with acquired generalized lipodystrophy [AGL], 12 with familial partial lipodystrophy [FPLD], and 7 with acquired partial lipodystrophy [APL]) were included. RESULTS Despite generalized loss of metabolically active adipose tissue, patients with CGL1 caused by AGPAT2 mutations had a significant amount of residual adipose tissue in the scalp, earlobes, retro-orbital region, and palms and soles. No residual adipose tissue was noted particularly in the head and neck, palms and soles in CGL2 caused by BSCL2 mutations. CGL4 caused by mutations in the PTRF gene was characterized with well-preserved retro-orbital and bone marrow fat in the absence of any visible residual adipose tissue in other areas. No residual adipose tissue was observed in AGL. Despite loss of subcutaneous fat, periarticular adipose tissue was preserved in the lower limbs of patients with FPLD. Retro-orbital adipose tissue was surprisingly preserved in APL, although they lacked head and neck fat. CONCLUSION Lipodystrophies are a heterogeneous group of disorders characterized by generalized or partial loss of adipose tissue, which can be congenital or acquired. Our results suggest that residual adipose tissue characteristics can help distinguish different subtypes of lipodystrophy.
Collapse
Affiliation(s)
- Canan Altay
- Department of Radiology, Dokuz Eylül University School of Medicine, İzmir, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Akinci B, Unlu SM, Celik A, Simsir IY, Sen S, Nur B, Keskin FE, Saydam BO, Ozdemir NK, Yurekli BS, Ergur BU, Sonmez M, Atik T, Arslan A, Demir T, Altay C, Tunc UA, Arkan T, Gen R, Eren E, Akinci G, Yilmaz AA, Bilen H, Ozen S, Celtik A, Erdeve SS, Cetinkaya S, Onay H, Sarioglu S, Oral EA. Renal complications of lipodystrophy: A closer look at the natural history of kidney disease. Clin Endocrinol (Oxf) 2018; 89:65-75. [PMID: 29722904 PMCID: PMC5999575 DOI: 10.1111/cen.13732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Lipodystrophy syndromes are a group of heterogeneous disorders characterized by adipose tissue loss. Proteinuria is a remarkable finding in previous reports. STUDY DESIGN In this multicentre study, prospective follow-up data were collected from 103 subjects with non-HIV-associated lipodystrophy registered in the Turkish Lipodystrophy Study Group database to study renal complications in treatment naïve patients with lipodystrophy. METHODS Main outcome measures included ascertainment of chronic kidney disease (CKD) by studying the level of proteinuria and the estimated glomerular filtration rate (eGFR). Kidney volume was measured. Percutaneous renal biopsies were performed in 9 patients. RESULTS Seventeen of 37 patients with generalized and 29 of 66 patients with partial lipodystrophy had CKD characterized by proteinuria, of those 12 progressed to renal failure subsequently. The onset of renal complications was significantly earlier in patients with generalized lipodystrophy. Patients with CKD were older and more insulin resistant and had worse metabolic control. Increased kidney volume was associated with poor metabolic control and suppressed leptin levels. Renal biopsies revealed thickening of glomerular basal membranes, mesangial matrix abnormalities, podocyte injury, focal segmental sclerosis, ischaemic changes and tubular abnormalities at various levels. Lipid vacuoles were visualized in electron microscopy images. CONCLUSIONS CKD is conspicuously frequent in patients with lipodystrophy which has an early onset. Renal involvement appears multifactorial. While poorly controlled diabetes caused by severe insulin resistance may drive the disease in some cases, inherent underlying genetic defects may also lead to cell autonomous mechanisms contributory to the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Baris Akinci
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Ali Celik
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ilgin Yildirim Simsir
- Division of Endocrinology, Department of Internal Medicine, Ege University, Izmir, Turkey
| | - Sait Sen
- Department of Pathology, Ege University, Izmir, Turkey
| | - Banu Nur
- Division of Pediatric Genetics, Department of Pediatrics, Akdeniz University, Antalya, Turkey
| | - Fatma Ela Keskin
- Division of Endocrinology, Department of Internal Medicine, Istanbul University, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Basak Ozgen Saydam
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Banu Sarer Yurekli
- Division of Endocrinology, Department of Internal Medicine, Ege University, Izmir, Turkey
| | | | - Melda Sonmez
- Koc University, School of Medicine, Istanbul, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Atakan Arslan
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| | - Tevfik Demir
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Canan Altay
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| | - Ulku Aybuke Tunc
- Division of Endocrinology, Karabuk State Hospital, Karabuk, Turkey
| | - Tugba Arkan
- Division of Endocrinology, Kocaeli Training Hospital, Kocaeli, Turkey
| | - Ramazan Gen
- Division of Endocrinology, Department of Internal Medicine, Mersin University, Mersin, Turkey
| | - Erdal Eren
- Division of Pediatric Endocrinology, Department of Pediatrics, Uludag University, Bursa, Turkey
| | - Gulcin Akinci
- Division of Pediatric Neurology, Dr. Behcet Uz Children’s Hospital, Izmir, Turkey
| | - Aslihan Arasli Yilmaz
- Division of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Habip Bilen
- Division of Endocrinology, Department of Internal Medicine, Ataturk University, Erzurum, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Aygul Celtik
- Division of Nephrology, Department of Internal Medicine, Ege University, Izmir, Turkey
| | - Senay Savas Erdeve
- Division of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Semra Cetinkaya
- Division of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Huseyin Onay
- Division of Pediatric Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Elif Arioglu Oral
- Division of Endocrinology and Metabolism, Brehm Center for Diabetes Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Lamins and metabolism. Clin Sci (Lond) 2017; 131:105-111. [PMID: 27974395 DOI: 10.1042/cs20160488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Lamins are nuclear intermediate filaments (IFs) with important roles in most nuclear activities, including nuclear organization and cell-cycle progression. Mutations in human lamins cause over 17 different diseases, termed laminopathies. Most of these diseases are autosomal dominant and can be roughly divided into four major groups: muscle diseases, peripheral neuronal diseases, accelerated aging disorders and metabolic diseases including Dunnigan type familial partial lipodystrophy (FLPD), acquired partial lipodystrophy (APL) and autosomal dominant leucodystrophy. Mutations in lamins are also associated with the metabolic syndrome (MS). Cells derived from patients suffering from metabolic laminopathies, as well as cells derived from the corresponding animal models, show a disruption of the mechanistic target of rapamycin (mTOR) pathway, abnormal autophagy, altered proliferative rate and down-regulation of genes that regulate adipogenesis. In addition, treating Hutchinson-Gilford progeria syndrome (HGPS) cells with the mTOR inhibitor rapamycin improves their fate. In this review, we will discuss the ways by which lamin genes are involved in the regulation of cell metabolism.
Collapse
|
21
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Polyzos SA, Mantzoros CS. Lipodystrophy: Time for a global registry and randomized clinical trials to assess efficacy, safety and cost-effectiveness of established and novel medications. Metabolism 2017. [PMID: 28641789 DOI: 10.1016/j.metabol.2017.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Demir T, Akinci B, Demir L, Altay C, Atik T, Cavdar U, Secil M, Comlekci A. Partial lipodystrophy of the limbs in a diabetes clinic setting. Prim Care Diabetes 2016; 10:293-299. [PMID: 26776282 DOI: 10.1016/j.pcd.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 12/12/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Partial lipodystrophy of the limbs (PLL) is a newly described form of lipodystrophy that is characterized by symmetrical distal lipoatrophy of the limbs and insulin resistant diabetes. RESEARCH DESIGN AND METHODS In this study, we prospectively screened our patients with type 2 diabetes for the presence of PLL phenotype. Metabolic parameters of PLL patients were compared to those with type 2 diabetes who applied to our diabetes clinic during the same period of time. RESULTS Between Sep 2013 and Mar 2015, 2020 patients with type 2 diabetes were evaluated for the presence of PLL. PLL was confirmed in 16 patients. The prevalence of PLL was calculated as 0.79% in our diabetes clinic. The most common phenotypic presentations were loss of subcutaneous fat in the forearms, calves and thighs, and loss of fat in forearms and calves. Patients with PLL had poor metabolic control and marked insulin resistance compared to subjects with type 2 diabetes. Diabetes had been diagnosed at a younger age in patients with PLL. Patients with PLL also had more atherogenic lipid profiles. CONCLUSIONS Our data suggests that PLL is a relatively common form of lipodystrophy in diabetes clinics, which is associated with poor metabolic control and marked insulin resistance. The recognition of PLL in patients with type 2 diabetes can help better clinical management by alerting the physician to these associated co-morbidities.
Collapse
Affiliation(s)
- Tevfik Demir
- Dokuz Eylul University, Division of Endocrinology, Izmir, Turkey
| | - Baris Akinci
- Dokuz Eylul University, Division of Endocrinology, Izmir, Turkey.
| | - Leyla Demir
- Ataturk Training Hospital, Department of Biochemistry, Izmir, Turkey
| | - Canan Altay
- Dokuz Eylul University, Department of Radiology, Izmir, Turkey
| | - Tahir Atik
- Ege University, Department of Pediatric Genetics, Izmir, Turkey
| | - Umit Cavdar
- Dokuz Eylul University, Division of Endocrinology, Izmir, Turkey
| | - Mustafa Secil
- Dokuz Eylul University, Department of Radiology, Izmir, Turkey
| | | |
Collapse
|
24
|
Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 2016; 65:1080-6. [PMID: 26775559 PMCID: PMC4889547 DOI: 10.1016/j.metabol.2015.11.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/11/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver injury most often associated with disorders of insulin resistance, including obesity, diabetes and the metabolic syndrome. The term encompasses several patterns of liver injury, including a relatively benign condition of steatosis without hepatocellular injury, nonalcoholic steatohepatitis (NASH), and a pattern of zone 1 steatosis, inflammation and fibrosis mainly observed in prepubertal children. Staging and grading systems have been developed to characterize the histological changes in NAFLD, mainly as a tool for clinical research. The histological features of NAFLD across these different manifestations and the scoring systems used to evaluate disease severity are discussed.
Collapse
Affiliation(s)
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|