1
|
Lu S, Jiang Q, Zhou P, Yin L, Wang N, Xu J, Qian Q, Tao M, Yin H, Han L, Gu Y, Gao F, Liu J, Chen S. Targeting Dlat-Trpv3 pathway by hyperforin elicits non-canonical promotion of adipose thermogenesis as an effective anti-obesity strategy. J Adv Res 2024:S2090-1232(24)00555-1. [PMID: 39631519 DOI: 10.1016/j.jare.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Promoting adipose thermogenesis is considered as a promising therapeutic intervention in obesity. However, endeavors to develop anti-obesity medications by targeting the canonical thermogenesis regulatory pathway, particularly β3-adrenergic receptor (β3-AR)-dependent mechanism, have failed due to the off-target effects of β3-AR agonists, exacerbating the risk of cardiovascular disease. Hyperforin (HPF), a natural compound extracted from the traditional herbal St. John's Wort, binds to Dihydrolipoamide s-acetyltransferase (Dlat) and exerts effective anti-obesity properties through promoting adipose thermogenesis. OBJECTIVES The objective of this study was to investigate the oral efficacy and pharmacokinetics profile of HPF, and explore the detailed mechanism by which Dlat modulates HPF-mediated adipose thermogenesis. METHODS To assess the anti-obesity efficacy of orally administered HPF in vivo, Dlat heterozygous knockout (Dlat+/-) mice and wild-type (WT) mice, both fed a high-fat diet (HFD), underwent a validation process that involved the use of metabolic cages, NMR analysis, and infrared imaging. Sprague Dawley rats were employed to determine the pharmacokinetic parameters of HPF. Seahorse assays, JC-1 staining, qPCR, and immunoblotting were performed to evaluate cellular thermogenic efficacy of HPF and Dlat in vitro. RESULTS Our study uncovered a non-canonical thermogenesis pathway involving Dlat, transient receptor potential vanilloid 3 (Trpv3, a calcium channel) and AMPK. Dlat interacted with Trpv3 to activate it, resulting in an increase in intracellular calcium (Ca2+) and the activation of Camkkβ. Camkkβ then stimulated AMPK, leading to elevated Ucp1 expression and initiating adipose thermogenesis. HPF promoted thermogenesis in adipose tissues through enhancing the Dlat-Trpv3 interaction independently of β3-AR, causing minimal cardiac side effects. Notably, HPF's thermogenic effects were reduced in Dlat+/- mice. Moreover, HPF exerted favorable oral bioavailability, a relatively long half-life, and extensive distribution within adipose tissues. CONCLUSION In summary, our study demonstrates that HPF targets a novel mechanism for promoting adipose thermogenesis and exhibits potent and safe anti-obesity efficacy.
Collapse
Affiliation(s)
- Sijia Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanxin Jiang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peihui Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Limin Yin
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ning Wang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junting Xu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiqi Qian
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mijia Tao
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hanrui Yin
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liu Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunqing Gu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Fei Gao
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
2
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Wang L, Lei Z, Zhang G, Cheng Y, Zhong M, Zhang G, Hu S. Olodaterol promotes thermogenesis in brown adipocytes via regulation of the β2-AR/cAMP/PKA signaling pathway. Biochem Biophys Res Commun 2024; 703:149689. [PMID: 38382361 DOI: 10.1016/j.bbrc.2024.149689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
The escalating incidence of metabolic pathologies such as obesity and diabetes mellitus underscores the imperative for innovative therapeutics targeting lipid metabolism modulation. Within this context, augmenting thermogenic processes in adipose cells emerges as a viable therapeutic approach. Given the limitations of previous β3-adrenergic receptor (β3-AR) agonist treatments in human diseases, there is an increasing focus on therapies targeting the β2-adrenergic receptor (β2-AR). Olodaterol (OLO) is a potent β2-AR agonist that is a potential novel pharmacological candidate in this area. Our study explores the role and underlying mechanisms of OLO in enhancing brown adipose thermogenesis, providing robust evidence from in vitro and in vivo studies. OLO demonstrated a dose-dependent enhancement of lipolysis, notably increasing the expression of Uncoupling Protein 1 (UCP1) and raising the rate of oxygen consumption in primary brown adipocytes. This suggests a significant increase in thermogenic potential and energy expenditure. The administration of OLO to murine models noticeably enhanced cold-induced nonshivering thermogenesis. OLO elevated UCP1 expression in the brown adipose tissue of mice. Furthermore, it promoted brown adipocyte thermogenesis by activating the β2-AR/cAMP/PKA signaling cascades according to RNA sequencing, western blotting, and molecular docking analysis. This investigation underscores the therapeutic potential of OLO for metabolic ailments and sheds light on the intricate molecular dynamics of adipocyte thermogenesis, laying the groundwork for future targeted therapeutic interventions in human metabolic disorders.
Collapse
Affiliation(s)
- Le Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Zhaobin Lei
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Guanjie Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
4
|
Zhang JY, Zhao Q, Li XM, Liu F, Zhao Q, Men L, Chen QJ, Zhai H, Yang YN. Association of an ADRB3 Variant with Coronary Artery Disease Within the Chinese Han Population: Construction of a Predictive Nomogram Model. Genet Test Mol Biomarkers 2023; 27:81-89. [PMID: 36989522 DOI: 10.1089/gtmb.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Objective: Coronary artery disease (CAD) is a the most common type of heart disease, and is associated with the highest mortality rate. The role of the β3-adrenergic receptor gene (ADRB3) in energy homeostasis and lipolysis suggests that it may be associated with obesity, insulin resistance, diabetes, and hypertension. Herein, we sought to examine the relationship between CAD and variants of the ADRB3 gene in individuals with Han and Uygur ethnicities in China. Methods: All 1022 participants were genotyped for two ADRB3 single nucleotide polymorphisms (SNPs; rs1892818 and rs9693898) using real-time polymerase chain reaction (TaqMan). Uygur (259 CAD patients, 161 control group) and Han (308 CAD patients, 294 control group) were included in two case-control studies. We subsequently developed a predictive model using ADRB3 genetic variation and clinical variables to predict risk of CAD. Results: The rs1892818 CT genotype (8.5% vs 3.9%, p = 0.019) and T allele (4.3% vs 1.9%, p = 0.021) were more frequently detected in the control subjects compared to CAD patients of the Han population but not in the Uygur population. The rs9693898 was not associated with CAD in either ethnic population. Logistic regression analysis further demonstrated that carriers of the rs1892818 CT genotype had a lower risk of CAD than did those with the CC genotype (CT vs CC, p = 0.044, odds ratio [OR] = 0.441, 95% confidence interval [CI]: 0.199-0.976). Using this data, we constructed a predictive nomogram model for CAD with an area under the curve (95% CI) of 0.722 (0.682, 0.761). Conclusions: Our results suggest that rs1892818 is associated with CAD in the Han population and that the CT genotype of rs1892818 may serve as a protective factor for CAD in Han individuals. The proposed nomograms can be used for the prediction of CAD in this population.
Collapse
Affiliation(s)
- Jin-Yu Zhang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Rehabilitation, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Zhao
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Men
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qing-Jie Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Zhai
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Luan J, Hu B, Wang H, Liu H, Wang S, Chen L, Li W, Wang J, Cheng M. Insights into β 3-adrenoceptor agonism through comprehensive in silico investigation. Comput Biol Chem 2023; 104:107836. [PMID: 36889141 DOI: 10.1016/j.compbiolchem.2023.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Research onβ3-AR, the new member of the adrenoceptor family, is in its infancy and few β3-AR agonists have been approved for marketing to date. Meanwhile, β3-AR exhibited obvious species differences in pharmacological properties, such as between human and animals, however, the 3D structure of human β3-AR has not been published, which makes it difficult to understand the interaction between human β3-AR and its agonists. Herein, binding patterns of β3-AR agonists are explored starting from the Alphafold predicted structural model, and the obtained model was optimized by using molecular dynamics simulations. Moreover, the human β3-AR and its agonists were subjected to molecular docking, dynamics simulations, binding free energy calculations and pharmacophore modeling to elucidate the characteristics of human β3-AR activity pockets and agonist conformational relationships, including a hydrophobic group, a positively charged group as well as two hydrogen-bonded donors, which provide comprehensive insights into the interactions between human β3-AR and its agonists.
Collapse
Affiliation(s)
- Jiasi Luan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizhun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weixia Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
6
|
Rajan S, Hofer P, Christiano A, Stevenson M, Ragolia L, Villa-Cuesta E, Fried SK, Lau R, Braithwaite C, Zechner R, Schwartz GJ, Hussain MM. Microsomal triglyceride transfer protein regulates intracellular lipolysis in adipocytes independent of its lipid transfer activity. Metabolism 2022; 137:155331. [PMID: 36228741 DOI: 10.1016/j.metabol.2022.155331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The triglyceride (TG) transfer activity of microsomal triglyceride transfer protein (MTP) is essential for lipoprotein assembly in the liver and intestine; however, its function in adipose tissue, which does not assemble lipoproteins, is unknown. Here we have elucidated the function of MTP in adipocytes. APPROACH AND RESULTS We demonstrated that MTP is present on lipid droplets in human adipocytes. Adipose-specific MTP deficient (A-Mttp-/-) male and female mice fed an obesogenic diet gained less weight than Mttpf/f mice, had less fat mass, smaller adipocytes and were insulin sensitive. A-Mttp-/- mice showed higher energy expenditure than Mttpf/f mice. During a cold challenge, A-Mttp-/- mice maintained higher body temperature by mobilizing more fatty acids. Biochemical studies indicated that MTP deficiency de-repressed adipose triglyceride lipase (ATGL) activity and increased TG lipolysis. Both wild type MTP and mutant MTP deficient in TG transfer activity interacted with and inhibited ATGL activity. Thus, the TG transfer activity of MTP is not required for ATGL inhibition. C-terminally truncated ATGL that retains its lipase activity interacted less efficiently than full-length ATGL. CONCLUSION Our findings demonstrate that adipose-specific MTP deficiency increases ATGL-mediated TG lipolysis and enhances energy expenditure, thereby resisting diet-induced obesity. We speculate that the regulatory function of MTP involving protein-protein interactions might have evolved before the acquisition of TG transfer activity in vertebrates. Adipose-specific inhibition of MTP-ATGL interactions may ameliorate obesity while avoiding the adverse effects associated with inhibition of the lipid transfer activity of MTP.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Amanda Christiano
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Eugenia Villa-Cuesta
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY 11530, United States of America
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Raymond Lau
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Collin Braithwaite
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Gary J Schwartz
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America.
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America; Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, United States of America.
| |
Collapse
|
7
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
8
|
Xie J, Liu M, Liu H, Jin Z, Guan F, Ge S, Yan J, Zheng M, Cai D, Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct 2021; 12:12734-12750. [PMID: 34846398 DOI: 10.1039/d1fo02863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of fat thermogenesis and modulation of the gut microbiota are promising therapeutic strategies against obesity. Zeaxanthin (ZEA), a carotenoid plant pigment, has been shown to prevent various diseases; however, the therapeutic mechanism for obesity remains unclear. Herein, whether ZEA improves obesity by activating the β3-adrenergic receptor (β3-AR) to stimulate white adipose tissue (WAT) thermogenesis and modulating the gut microbiota was investigated. C57BL6/N mice were fed a high-fat diet (HFD) supplemented with ZEA for 22 weeks. ZEA treatment reduced body weight, fat weight, adipocyte hypertrophy, liver weight, and lipid deposition, and improved dyslipidaemia, serum GPT, GOT, leptin, and irisin levels, glucose intolerance, and insulin resistance in HFD-fed mice. Mechanistically, ZEA treatment induced the expression of β3-AR and thermogenic factors, such as PRDM16, PGC-1α, and UCP1, in inguinal WAT (iWAT) and brown adipose tissue. ZEA treatment stimulated iWAT thermogenesis through the synergistic cooperation of key organelles, which manifested as an increased expression of lipid droplet degradation factors (ATGL, CGI-58 and pHSL), mitochondrial biogenesis factors (Sirt1, Nrf2, Tfam, Nampt and Cyt-C), peroxisomal biogenesis factors (Pex16, Pex19 and Pmp70), and β-oxidation factors (Cpt1, Cpt2, Acadm and Acox1). The thermogenic effect of ZEA was abolished by β3-AR antagonist (SR59230A) treatment. Additionally, dietary supplementation with ZEA reversed gut microbiota dysbiosis by regulating the abundance of Firmicutes, Clostridia, Proteobacteria, and Desulfovibrio, which were associated with the thermogenesis- and obesity-associated indices by Spearman's correlation analysis. Functional analysis of the gut microbiota indicated that ZEA treatment significantly enriched the lipid metabolism pathways. These results demonstrate that ZEA is a promising multi-target functional food for the treatment of obesity by activating β3-AR to stimulate iWAT thermogenesis, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Fengtao Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Rajan S, de Guzman HC, Palaia T, Goldberg IJ, Hussain MM. A simple, rapid, and sensitive fluorescence-based method to assess triacylglycerol hydrolase activity. J Lipid Res 2021; 62:100115. [PMID: 34508728 PMCID: PMC8488599 DOI: 10.1016/j.jlr.2021.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Lipases constitute an important class of water-soluble enzymes that catalyze the hydrolysis of hydrophobic triacylglycerol (TAG). Their enzymatic activity is typically measured using multistep procedures involving isolation and quantification of the hydrolyzed products. We report here a new fluorescence method to measure lipase activity in real time that does not require the separation of substrates from products. We developed this method using adipose triglyceride lipase (ATGL) and lipoprotein lipase (LpL) as model lipases. We first incubated a source of ATGL or LpL with substrate vesicles containing nitrobenzoxadiazole (NBD)-labeled TAG, then measured increases in NBD fluorescence, and calculated enzyme activities. Incorporation of NBD-TAG into phosphatidylcholine (PC) vesicles resulted in some hydrolysis; however, incorporation of phosphatidylinositol into these NBD-TAG/PC vesicles and increasing the ratio of NBD-TAG to PC greatly enhanced substrate hydrolysis. This assay was also useful in measuring the activity of pancreatic lipase and hormone-sensitive lipase. Next, we tested several small-molecule lipase inhibitors and found that orlistat inhibits all lipases, indicating that it is a pan-lipase inhibitor. In short, we describe a simple, rapid, fluorescence-based triacylglycerol hydrolysis assay to assess four major TAG hydrolases: intracellular ATGL and hormone-sensitive lipase, LpL localized at the extracellular endothelium, and pancreatic lipase present in the intestinal lumen. The major advantages of this method are its speed, simplicity, and elimination of product isolation. This assay is potentially applicable to a wide range of lipases, is amenable to high-throughput screening to discover novel modulators of triacylglycerol hydrolases, and can be used for diagnostic purposes.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Hazel C de Guzman
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Balaramnavar VM, Srivastava R, Varshney S, Kumar S, Rawat AK, Chandasana H, Chhonker YS, Bhatta RS, Srivastava AK, Gaikwad AN, Lakshmi V, Saxena AK. Synthesis, biological evaluation, and molecular docking study of some new rohitukine analogs as protein tyrosine phosphatase 1B inhibitors. Bioorg Chem 2021; 110:104829. [PMID: 33773222 DOI: 10.1016/j.bioorg.2021.104829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Rohitukine (RH) was extracted from the stem bark of Dysoxylum binectariferum Hook. It was derivatized to different arylsulphanmides by treating with the corresponding aryl sulphonyl chlorides. These derivatives were tested in-vitro on protein tyrosine phosphatase 1B (PTP1B) inhibition. Among these the active compounds K2, K3, K5, and K8 significantly inhibited the PTP1B by 51.3%, 65.6%, 71.9%, and 55.9% respectively at 10 µg/ml, the results were also supported by in-silico docking experiments. The most potent compound K5 was analyzed for antidiabetic and antidyslipidemic activity in vivo. It showed a marked reduction in blood glucose level (random and fasting) and serum insulin level in db/db mice. It improved glucose intolerance as ascertained by the oral glucose tolerance test (OGTT). These NCEs (New Chemical Entities) also lowered cholesterol and triglyceride profiles while improved high-density lipoprotein cholesterol in db/db mice. The K5 was further evaluated for antiadipogenic activity on MDI (Methylisobutylxanthine, dexamethasone, and insulin)-induced adipogenesis. where it significantly inhibited MDI-induced adipogenesis in 3 T3-L1 preadipocytes, at 10 µM and 20 µM concentration. These results were compared with the parent compound RH which inhibited 35% and 45% lipid accumulation while the RH analog K5 inhibited the lipid accumulation by 41% and 51% at 10 and 20 µM concentration, respectively. These results well corroborated with in-silico studies.
Collapse
Affiliation(s)
- V M Balaramnavar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India; Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand, India
| | - R Srivastava
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - S Varshney
- Department of Pharmacology, CSIR-Central Drug Research Institute, Jankipuram Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - S Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - A K Rawat
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - H Chandasana
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Y S Chhonker
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - R S Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - A K Srivastava
- Department of Biochemistry, CSIR-Central Drug Research Institute, Jankipuram Extention, Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - A N Gaikwad
- Department of Pharmacology, CSIR-Central Drug Research Institute, Jankipuram Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India
| | - V Lakshmi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, UP, India
| | - A K Saxena
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram, Extention Sector 10, Sitapur Road, Lucknow 226031, UP, India.
| |
Collapse
|
12
|
Chen ME, Chen XW, Hu YH, Ye R, Lv JW, Li B, Zhang FM. Recent advances of Ritter reaction and its synthetic applications. Org Chem Front 2021. [DOI: 10.1039/d1qo00496d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive survey of Ritter reactions from 2014 to 2020.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Rui Ye
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian-Wei Lv
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
13
|
Liang C, Li Y, Bai M, Huang Y, Yang H, Liu L, Wang S, Yu C, Song Z, Bao Y, Yi J, Sun L, Li Y. Hypericin attenuates nonalcoholic fatty liver disease and abnormal lipid metabolism via the PKA-mediated AMPK signaling pathway in vitro and in vivo. Pharmacol Res 2020; 153:104657. [PMID: 31982488 DOI: 10.1016/j.phrs.2020.104657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and constitutes a major risk factor for progression to cirrhosis, liver failure and hepatocellular carcinoma (HCC). The occurrence of NAFLD is closely associated with abnormal lipid metabolism and implies a high risk of type 2 diabetes and cardiovascular disease. Therefore, specific and effective drugs for the prevention and treatment of NAFLD are necessary. Hypericin (HP) is one of the main active ingredients of Hypericum perforatum L., and we previously revealed its protective role in islet β-cells and its effects against type 2 diabetes. In this study, we aimed to explore the preventive and therapeutic effects of HP against NAFLD and the underlying mechanisms in vitro and in vivo. Here, we demonstrated that HP improved cell viability by reducing apoptosis and attenuated lipid accumulation in hepatocytes both in vitro and in vivovia attenuating oxidative stress, inhibiting lipogenesis and enhancing lipid oxidization. Thus, HP exhibited significant preventive and therapeutic effects against HFHS-induced NAFLD and dyslipidemia in mice. Furthermore, we demonstrated that HP directly bound to PKACα and activated PKA/AMPK signaling to elicit its effects against NAFLD, suggesting that PKACα is one of the drug targets of HP. In addition, the enhancing effect of HP on lipolysis in adipocytes through the activation of PKACα was also elucidated. Together, the conclusions indicated that HP, of which one of the targets is PKACα, has the potential to be used as a preventive or therapeutic drug against NAFLD or abnormal lipid metabolism in the future.
Collapse
Affiliation(s)
- Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yan Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Hang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Yuxin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Balaramnavar VM, Ahmad K, Saeed M, Ahmad I, Kamal M, Jawed T. Pharmacophore-based approaches in the rational repurposing technique for FDA approved drugs targeting SARS-CoV-2 Mpro. RSC Adv 2020; 10:40264-40275. [PMID: 35520834 PMCID: PMC9057460 DOI: 10.1039/d0ra06038k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/25/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023] Open
Abstract
Novel coronavirus (CoV) is the primary etiological virus responsible for the pandemic that started in Wuhan in 2019–2020. This viral disease is extremely prevalent and has spread around the world. Preventive steps are restricted social contact and isolation of the sick individual to avoid person-to-person transmission. There is currently no cure available for the disease and the search for novel medications or successful therapeutics is intensive, time-consuming, and laborious. An effective approach in managing this pandemic is to develop therapeutically active drugs by repurposing or repositioning existing drugs or active molecules. In this work, we developed a feature-based pharmacophore model using reported compounds that inhibit SARS-CoV-2. This model was validated and used to screen the library of 565 FDA-approved drugs against the viral main protease (Mpro), resulting in 66 drugs interacting with Mpro with higher binding scores in docking experiments than drugs previously reported for the target diseases. The study identified drugs from many important classes, viz. D2 receptor antagonist, HMG-CoA inhibitors, HIV reverse transcriptase and protease inhibitors, anticancer agents and folate inhibitors, which can potentially interact with and inhibit the SARS-CoV-2 Mpro. This validated approach may help in finding the urgently needed drugs for the SARS-CoV-2 pandemic with infinitesimal chances of failure. Novel coronavirus (CoV) is the primary etiological virus responsible for the pandemic that started in Wuhan in 2019–2020.![]()
Collapse
Affiliation(s)
- Vishal M. Balaramnavar
- Department of Medicinal and Pharmaceutical Chemistry
- Global Institute of Pharmaceutical Education and Research
- Kashipur
- India
| | - Khurshid Ahmad
- Department of Medical Biotechnology
- Yeungnam University
- Gyeongsan 38541
- South Korea
| | - Mohd Saeed
- Department of Biology College of Scienes
- University of Hail
- Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science
- College of Applied Medical Sciences
- King Khalid University
- Abha
- Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Prince Sattam Bin Abdulaziz University
- Al-Kharj 11942
- Kingdom of Saudi Arabia
| | - Talaha Jawed
- Department of Pharmacology
- College of Medicine
- Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
- Riyadh 13317
- Saudi Arabia
| |
Collapse
|
15
|
Singh A, Srinivasan AK, Chakrapani LN, Kalaiselvi P. LOX-1, the Common Therapeutic Target in Hypercholesterolemia: A New Perspective of Antiatherosclerotic Action of Aegeline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8285730. [PMID: 31885819 PMCID: PMC6914969 DOI: 10.1155/2019/8285730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/25/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized low-density lipoprotein (Ox-LDL) in the aorta of aged rats. Ox-LDL initiates LOX-1 activation in the endothelium of lipid-accumulating sites of both animal and human subjects of hypercholesterolemia. Targeting LOX-1 may provide a novel diagnostic strategy towards hypercholesterolemia and vascular diseases. HYPOTHESIS This study was planned to address whether aegeline (AG) could bind to LOX-1 with a higher affinity and modulate the uptake of Ox-LDL in hypercholesterolemia. STUDY DESIGN Thirty-six Wistar rats were divided into six groups. The pathology group rats were fed with high-cholesterol diet (HCD) for 45 days, and the treatment group rats were fed with HCD and aegeline/atorvastatin (AV) for the last 30 days. In vivo and in vitro experiments were carried out to assay the markers of atherosclerosis like Ox-LDL and LOX-1 levels. Histopathological examination was performed. Oil Red O staining was carried out in the IC-21 cell line. Docking studies were performed. RESULTS AG administration effectively brought down the lipid levels induced by HCD. The lowered levels of Ox-LDL and LOX-1 in AG-administered rats deem it to be a potent antihypercholesterolemic agent. Compared to AV, AG had a pronounced effect in downregulating the expression of lipids evidenced by Oil Red O staining. AG binds with LOX-1 at a higher affinity validated by docking. CONCLUSION This study validates AG to be an effective stratagem in bringing down the lipid stress induced by HCD and can be deemed as an antihypercholesterolemic agent.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Preclinical Stroke Modelling Laboratory, Burke Neurological Institute, Weill Cornell Medicine, White Plains, New York 10605, USA
| | - Ashok Kumar Srinivasan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
- Department of HIV, National Institute for Research in Tuberculosis, Chennai, India
| | - Lakshmi Narasimhan Chakrapani
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| | - Periandavan Kalaiselvi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
16
|
Fang D, Shi X, Lu T, Ruan H, Gao Y. The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis. Metabolism 2019; 98:16-26. [PMID: 31132382 DOI: 10.1016/j.metabol.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The thermogenic brown adipose tissue (BAT) has been proposed as a potential target to prevent or treat obesity and related metabolic diseases. BAT secretes adipokines to regulate the thermogenic program in an autocrine or paracrine manner. Follistatin-like 1 (FSTL1), a glycoprotein involved in adipogenesis and obesity, however, the function of FSTL1 in BAT thermogenesis and in the regulation of systemic energy homeostasis are not fully understood. METHODS Whole-body ablation Fstl1 heterozygous mice (Fstl1+/-) and its littermates control were injected with CL316,243 to assess energy balance. A series of FSTL1 overexpression and knockdown experiments were carried out to evaluate its function in regulating thermogenic gene expression in brown adipocytes. RESULTS FSTL1 expression was induced upon BAT activation during cold challenge or β3-adrenergic activation. FSTL1 haploinsufficiency in mice led to reduced thermogenic gene expression, impaired BAT recruitment, and decreased heat production. FSTL1 cell-autonomously promoted the β3-adrenergic signaling, which was required to upregulate PPARγ and UCP1 in brown adipocytes. Furthermore, only glycosylated FSTL1 could be secreted from brown adipocytes to induce the β3-adrenergic activation. CONCLUSIONS Our results suggest FSTL1 as a novel stimulator of the β-adrenergic signaling and BAT thermogenesis.
Collapse
Affiliation(s)
- Dongliang Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Shi
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haibin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Derf A, Sharma A, Bharate SB, Chaudhuri B. Aegeline, a natural product from the plant Aegle marmelos, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast. Bioorg Med Chem Lett 2018; 29:454-460. [PMID: 30579794 DOI: 10.1016/j.bmcl.2018.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Herein, we have identified yeast Sec22p (ySec22p), a SNARE protein essential for endoplasmic reticulum to Golgi trafficking, as a suppressor of Bax-induced yeast apoptosis and corroborated published observations that ySec22p suppresses α-synuclein's toxicity in yeast. It has been suggested that compounds which enhance expression, in neurons, of human homologues of ySec22p (Sec22Bp/Sec22p/Sec22A) would prevent synucleinopathies, such as Parkinson's disease. With the aim of finding a small molecule that would mimic ySec22p, a library of natural products consisting of 394-compounds was screened using yeast cells that express either human α-synuclein or human Bax. The antioxidant aegeline, an alkaloid-amide occurring in the leaves of the plant Aegle marmelos Correa, was the only molecule that overcame apoptosis induced by both α-synuclein and Bax in yeast. Besides, aegeline also prevented growth block in cells expressing the more toxic A53T α-synuclein mutant. Restoration of cell growth occurred through inhibition of increased ROS levels, mitochondrial membrane potential loss and nuclear DNA fragmentation, characteristics of apoptosis manifested in α-synuclein or Bax-expressing cells. These results highlight the importance of yeast systems to identify rapidly molecules that may prevent the onset of apoptosis that occurs in Parkinson's disease.
Collapse
Affiliation(s)
- Asma Derf
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ankita Sharma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|