1
|
Vazquez MJ, Daza-Dueñas S, Velasco I, Ruiz-Pino F, Sanchez-Tapia MJ, Manfredi-Lozano M, Torres-Granados C, Barroso A, Roa J, Sánchez-Garrido MA, Dieguez C, Lomniczi A, Nogueiras R, Tena-Sempere M. Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit. Metabolism 2025; 164:156125. [PMID: 39740742 DOI: 10.1016/j.metabol.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e., the hormonal trigger of ovulation, and its repression by conditions of energy deficit. Kiss1 neurons in the preoptic area, with proven roles in the control of ovulation, express Sirt1 mRNA. Reciprocal changes in hypothalamic SIRT1 content and Kiss1 expression were observed during the pre-ovulatory phase in adult female rats. Central activation of SIRT1 reduced Kiss1 expression in the rostral hypothalamus, and attenuated the preovulatory surge, while blockade of central SIRT1 augmented it. Conditions of energy deficit enhanced hypothalamic SIRT1 activity and caused suppression of the pre-ovulatory surge and ovulation, which could be rescued by central SIRT1 inhibition. In turn, virogenetic induction of SIRT1 in rostral hypothalamic Kiss1 neurons in adult female mice disrupted ovarian cyclicity and suppressed reproductive indices, despite preserved body weight. Our data document the prominent function of hypothalamic SIRT1 as a key modulator of Kiss1 neurons and the hormonal surge driving ovulation in adulthood, with a major role in its inhibition during conditions of energy insufficiency.
Collapse
Affiliation(s)
- María J Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain
| | - María Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel A Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lomniczi
- Department of Physiology and Biophysics, Dalhousie Faculty of Medicine, Halifax, Canada
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Rodríguez-Vázquez E, Aranda-Torrecillas Á, López-Sancho M, Castellano JM, Tena-Sempere M. Emerging roles of lipid and metabolic sensing in the neuroendocrine control of body weight and reproduction. Front Endocrinol (Lausanne) 2024; 15:1454874. [PMID: 39290326 PMCID: PMC11405246 DOI: 10.3389/fendo.2024.1454874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The hypothalamus lies at the intersection of brain and hormonal mechanisms governing essential bodily functions, including metabolic/body weight homeostasis and reproduction. While metabolism and fertility are precisely regulated by independent neuroendocrine axes, these are tightly connected, as reflection of the bidirectional interplay between the energy status of the organisms and their capacity to reproduce; a connection with important pathophysiological implications in disorders affecting these two crucial systems. Beyond the well-characterized roles of key hormones (e.g., leptin, insulin, ghrelin) and neuropeptides (e.g., melanocortins, kisspeptins) in the integral control of metabolism and reproduction, mounting evidence has pointed out a relevant function of cell energy sensors and lipid sensing mechanisms in the hypothalamic control of metabolism, with prominent roles also for metabolic sensors, such as mTOR, AMPK and SIRT1, in the nutritional regulation of key aspects of reproduction, such as pubertal maturation. We provide herein a synoptic overview of these novel regulatory pathways, with a particular focus on their putative function in the metabolic control of puberty, and delineate new avenues for further exploration of the intricate mechanisms whereby metabolism and reproduction are tightly connected.
Collapse
Affiliation(s)
- Elvira Rodríguez-Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Álvaro Aranda-Torrecillas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - María López-Sancho
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Juan M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofia, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
3
|
Ruiz-Cruz M, Torres-Granados C, Tena-Sempere M, Roa J. Central and peripheral mechanisms involved in the control of GnRH neuronal function by metabolic factors. Curr Opin Pharmacol 2023; 71:102382. [PMID: 37307655 DOI: 10.1016/j.coph.2023.102382] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.
Collapse
Affiliation(s)
- Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
4
|
Argente J, Dunkel L, Kaiser UB, Latronico AC, Lomniczi A, Soriano-Guillén L, Tena-Sempere M. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol 2023; 11:203-216. [PMID: 36620967 PMCID: PMC10198266 DOI: 10.1016/s2213-8587(22)00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023]
Abstract
Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid, University Hospital Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain.
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, London, UK
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics, LIM42, Department of Endocrinology and Metabolism, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leandro Soriano-Guillén
- Service of Pediatrics, University Hospital Fundación Jiménez Díaz, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Córdoba, Spain; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Polyzos SA, Hill MA, Fuleihan GEH, Gnudi L, Kim YB, Larsson SC, Masuzaki H, Matarese G, Sanoudou D, Tena-Sempere M, Mantzoros CS. Metabolism, Clinical and Experimental: seventy years young and growing. Metabolism 2022; 137:155333. [PMID: 36244415 DOI: 10.1016/j.metabol.2022.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Ghada El-Hajj Fuleihan
- Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, World Health Organization Collaborating Center for Metabolic Bone Disorders, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, UK
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiroaki Masuzaki
- Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratorio di Immunogenetica dei Trapianti & Registro Regionale dei Trapianti di Midollo, AOU "Federico II", Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|