1
|
Li Y, Lin X, Zou K, Du J, Li Q, Zhong L, Jiang S. Blood biochemical landscape and new insights into clinical decision-making for polycystic ovary syndrome in Chinese women: a prospective cohort study. Front Endocrinol (Lausanne) 2025; 16:1534733. [PMID: 40375948 PMCID: PMC12078145 DOI: 10.3389/fendo.2025.1534733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/03/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder affecting women's reproductive and metabolic health, faces diagnostic challenges due to heterogeneous clinical presentations and the absence of reliable biomarkers. This study investigates the role of Glucosaminyl (N-acetyl) transferase 2 (GCNT2) in modulating sex hormone-binding globulin (SHBG) and its potential as a therapeutic target in PCOS pathophysiology. Methods A prospective cohort of 103 PCOS patients treated with oral contraceptives (2021-2024) was established. Bidirectional Mendelian randomization (MR) was employed to assess genetic associations and causal relationships between PCOS and SHBG. Molecular docking studies evaluated cryptotanshinone's binding affinity to key proteins (COL1A1, COL4A2, COL6A2) in the PI3K/Akt pathway. GCNT2's regulatory effects on collagen synthesis and extracellular matrix pathways. Pharmacokinetic profiling validated therapeutic viability. Results Bidirectional MR revealed significant genetic associations (P < 0.001) and causal links between PCOS and SHBG, implicating GCNT2 as a key modulator. Cryptotanshinone exhibited strong binding affinity to PI3K/Akt signaling pathway proteins and favorable pharmacokinetic properties. Enrichment analyses highlighted GCNT2's role in collagen biosynthesis (FDR < 0.05) and extracellular matrix regulation. Discussion This study identifies GCNT2 as a critical mediator of PCOS pathophysiology through SHBG modulation and collagen remodeling. Cryptotanshinone emerges as a promising therapeutic candidate, targeting PI3K/Akt signaling pathway with high specificity. These findings advance the understanding of PCOS mechanisms and provide a foundation for biomarker-driven diagnostics and precision therapeutics. Further validation in clinical trials is warranted to translate these insights into practice.
Collapse
Affiliation(s)
- Yutong Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Xiufeng Lin
- Reproductive Center, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Ke Zou
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Du
- Reproductive Center, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Qingni Li
- Reproductive Center, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Linkun Zhong
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Shan Jiang
- Reproductive Center, Boai Hospital of Zhongshan, Zhongshan, Guangdong, China
| |
Collapse
|
2
|
Stentebjerg LL, Madsen LR, Støving RK, Hartmann B, Holst JJ, Vinter C, Juhl CB, Hojlund K, Jensen DM. Altered postprandial glucose metabolism and enteropancreatic hormone responses during pregnancy following Roux-en-Y gastric bypass: a prospective cohort study. BMJ Open Diabetes Res Care 2025; 13:e004672. [PMID: 40113260 PMCID: PMC11931895 DOI: 10.1136/bmjdrc-2024-004672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) increases the risk of postprandial hypoglycemia, whereas pregnancy decreases insulin sensitivity, which could be expected to counteract hypoglycemia. We examined if RYGB performed prior to pregnancy altered the postprandial glucose metabolism and enteropancreatic hormone responses to a mixed meal test (MMT). RESEARCH DESIGN AND METHODS Twenty-three women with RYGB and 23 women matched on prepregnancy body mass index and parity underwent a 4-hour MMT in the first and third trimester of pregnancy with measurement of circulating levels of glucose, insulin, C-peptide, glucose-dependent insulin peptide (GIP), glucagon-like peptide 1 (GLP-1), glucagon, free fatty acids, and lactate. Biochemical hypoglycemia was defined as plasma glucose <3.5 mmol/L. RESULTS Women with RYGB had earlier and higher peak glucose, lower nadir glucose levels, and a higher frequency of biochemical hypoglycemia compared with women without RYGB in both the first and third trimester. The lower glucose levels were preceded by markedly elevated total GLP-1 and insulin levels in women with RYGB, whereas total GIP levels were unaltered. The glucagon levels were lower in women with RYGB. In the first trimester MMT, peak and area under the curve of total plasma GLP-1 and serum insulin levels were negatively associated with nadir plasma glucose, while the early postmeal response of plasma glucagon was positively associated with nadir plasma glucose in the third trimester. CONCLUSIONS These results provide novel insights into the combined effects of RYGB and pregnancy on postmeal glucose metabolism and enteropancreatic hormone responses during pregnancy, and how these changes associate with an increased risk of postprandial hypoglycemia. TRIAL REGISTRATION NUMBER NCT03713060.
Collapse
Affiliation(s)
- Louise Laage Stentebjerg
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lene Ring Madsen
- Steno Diabetes Center Aarhus, Aarhus Universitetshospital Skejby, Aarhus, Denmark
- Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - René Klinkby Støving
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bolette Hartmann
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Vinter
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Claus Bogh Juhl
- Department of Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Kurt Hojlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dorte Møller Jensen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Rayas M, Pezzica S, Honka H, Carli F, Peterson R, DeFronzo R, Gastaldelli A, Salehi M. GLP-1 enhances β-cell response to protein ingestion and bariatric surgery amplifies it. Obesity (Silver Spring) 2025; 33:104-115. [PMID: 39635951 DOI: 10.1002/oby.24182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The glycemic-independent actions of glucagon-like peptide-1 (GLP-1) in the prandial state in humans are unknown. We examined the contribution of GLP-1 to β-cell secretory response (primary endpoint) and glucose metabolism during protein ingestion under basal glycemia, as well as whether these responses are affected by rerouted gut after gastric bypass (GB) or sleeve gastrectomy (SG). METHODS Insulin secretion rate (ISR) and glucose fluxes during a 50-g oral protein load were compared among 10 nondiabetic individuals with GB, 9 with SG, and 7 non-operated controls (CN), with and without intravenous infusion of exendin(9-39) (Ex-9), a GLP-1 receptor (GLP-1R) antagonist. RESULTS Blocking GLP-1R increased glucose before and after protein ingestion and decreased β-cell sensitivity to glucose in the first 30 min of protein ingestion in all three groups (p < 0.05). Reduction in the premeal ISR by Ex-9 infusion was only observed in CN, whereas diminished prandial ISR3h by GLP-1R blockade was only observed in GB and SG (p < 0.05 for interaction). GLP-1R blockade enhanced post-protein insulin action in GB and SG, but not in CN, and exaggerated endogenous glucose production only GB (p < 0.05 for interaction). CONCLUSIONS These findings are consistent with both pancreatic and extra-pancreatic roles for GLP-1 during protein ingestion in humans that are exaggerated by bariatric surgery.
Collapse
Affiliation(s)
- Maria Rayas
- Department of Pediatrics, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Henri Honka
- Division of Diabetes, Department of Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Richard Peterson
- Department of Surgery, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Ralph DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
- Division of Diabetes, Department of Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Marzieh Salehi
- Division of Diabetes, Department of Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, Audie Murphy Hospital, San Antonio, Texas, USA
| |
Collapse
|
4
|
Zheng H, Sun L, Wang L, Zhao Y, Gong F, Zhu H. Incidence and risk factors of post-metabolic and bariatric surgery hypoglycemia: a systematic review. Int J Obes (Lond) 2025; 49:31-42. [PMID: 39448871 DOI: 10.1038/s41366-024-01651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE This study aimed to systematically review the existing literature to summarize the incidence and risk factors of post-metabolic and bariatric surgery hypoglycemia (MBSH). METHODS We searched PubMed, Medline, Embase, and the Cochrane Library databases for the studies published from inception to August 2023. Randomized controlled trials and analytical studies that investigated the incidence or risk factors of MBSH after different surgery techniques (including Roux-en-Y gastric bypass, sleeve gastrectomy, gastric banding, duodenal switch, omega-loop gastric bypass, and vertical banded gastroplasty) were involved. The incidence and risk factors of MBSH were extracted and described separately based on different diagnostic criteria and then summarized the risk factors and their statistical findings collectively. RESULTS Twenty-nine studies were reviewed with follow-up ranging from 1 to 22 years. The incidence of MBSH ranged significantly across different diagnostic methods: 2.6-66.4% (self-report), 6.6-61.8% (oral glucose tolerance test), 29.4-78.6% (mixed-meal tolerance test), and 50-75% (continuous glucose monitoring). Patients with a mean age of 49.8 years and 89.0% of them were women with a better glycemic control who undergo RYGB and achieve 86.5% of estimated weight loss from surgery should be particularly vigilant about the possibility of developing MBSH. Distinct biomarkers such as IGF-1 (OR 1.06), fasting glicentin (AUC 0.81), HbA1c (AUC 0.76), and absolute weight reduction (AUC 0.72), greater fluctuations in glucose (OR 1.98) are valuable in promptly detecting MBSH. Specifically, patients with prior cholecystectomy or antidepressant therapy should be particularly cautious. CONCLUSION The review highlights higher MBSH risk in younger women with significant weight loss after RYGB, and those with prior cholecystectomy or antidepressant use. Systematic summarization of MBSH criteria allowed us to identify the predictors for MBSH, which can aid in early diagnosis and treatment, reducing the need for prolonged monitoring.
Collapse
Affiliation(s)
- Huaijun Zheng
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Lize Sun
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Honka H, Gastaldelli A, Pezzica S, Peterson R, DeFronzo R, Salehi M. Differential effect of endogenous glucagon-like peptide-1 on prandial glucose counterregulatory response to hypoglycaemia in humans with and without bariatric surgery. Diabetes Obes Metab 2024; 26:2476-2486. [PMID: 38558527 PMCID: PMC11078606 DOI: 10.1111/dom.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
AIM To determine the effect of endogenous glucagon-like peptide 1 (GLP-1) on prandial counterregulatory response to hypoglycaemia after gastric bypass (GB). MATERIALS AND METHODS Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion, were compared during a hyperinsulinaemic-hypoglycaemic (~3.2 mmol/L) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) infusion in non-diabetic patients who had previously undergone GB compared to matched participants who had previously undergone sleeve gastrectomy (SG) and non-surgical controls. RESULTS Exendin-(9-39) infusion raised prandial endogenous glucose production (EGP) response to insulin-induced hypoglycaemia in the GB group but had no consistent effect on EGP response among the SG group or non-surgical controls (p < 0.05 for interaction). The rates of systemic appearance of ingested glucose or prandial glucose utilization did not differ among the three groups or between studies with and without exendin-(9-39) infusion. Blockade of GLP-1R had no effect on insulin secretion or insulin action but enhanced prandial glucagon in all three groups. CONCLUSIONS These results indicate that impaired post-meal glucose counterregulatory response to hypoglycaemia after GB is partly mediated by endogenous GLP-1, highlighting a novel pathogenic mechanism of GLP-1 in developing hypoglycaemia in this population.
Collapse
Affiliation(s)
- Henri Honka
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Richard Peterson
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
| | - Marzieh Salehi
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX
| |
Collapse
|
6
|
Rayas M, Gastaldelli A, Honka H, Pezzica S, Carli F, Peterson R, DeFronzo R, Salehi MS. GLP-1 enhances beta-cell response to protein ingestion and bariatric surgery amplifies it. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.22.23297377. [PMID: 37961500 PMCID: PMC10635165 DOI: 10.1101/2023.10.22.23297377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE Protein ingestion stimulates β-cell secretion and alters glucose flux. Enhanced action of glucagon-like peptide 1 (GLP-1) and increased plasma glucose excursion contribute to prandial hyperinsulinemia after gastric bypass surgery (GB) and sleeve gastrectomy (SG). We examined the contribution of endogenous GLP-1 to glucose kinetics and β-cell response to protein ingestion under basal glucose concentrations in humans, and whether these responses are affected by rerouted gut after GB or SG. DESIGN Glucose fluxes, insulin secretion rate (ISR), and incretin responses to a 50-gram oral protein load were compared between 10 non-diabetic individuals with GB, 9 matched subjects with SG and 7 non-operated controls (CN) with and without intravenous infusion of exendin-(9- 39) [Ex-9), a specific GLP-1 receptor (GLP-1R) antagonist. RESULTS Blocking GLP-1R increased the plasma glucose concentration before and after protein ingestion in all 3 groups (p<0.05) and decreased β-cell sensitivity to glucose in the first 30 minutes of protein ingestion (p<0.05). Reduction in the prandial ISR3h by Ex-9 infusion, however, only was observed in GB and SG (p<0.05 for interaction) and not in controls. Also, GLP-1R blockade increased post-protein insulin action in GB and SG, but not CN (p=0.09 for interaction). Endogenous glucose production (EGP) during the first 60 minutes after protein ingestion was increased in all 3 groups but EGP3h only was accentuated in GB by Ex-9 infusion (p<0.05 for interaction). CONCLUSION These findings are consistent with both a pancreatic and extrapancreatic role for GLP-1 during protein ingestion in humans, and GLP-1 actions are exaggerated by bariatric surgery.
Collapse
|
7
|
Honka H, Gastaldelli A, Pezzica S, Peterson R, DeFronzo R, Salehi M. Endogenous glucagon-like peptide 1 diminishes prandial glucose counterregulatory response to hypoglycemia after gastric bypass surgery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.20.23295840. [PMID: 37790563 PMCID: PMC10543055 DOI: 10.1101/2023.09.20.23295840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We have previously shown that prandial endogenous glucose production (EGP) during insulin-induced hypoglycemia is smaller in non-diabetic subjects with gastric bypass (GB), where prandial glucagon-like peptide 1 (GLP-1) concentrations are 5-10 times higher than those in non-operated controls. Here, we sought to determine the effect of endogenous GLP-1 on prandial counterregulatory response to hypoglycemia after GB. Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion were compared during a hyperinsulinemic hypoglycemic (~3.2 mmol/l) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) (Ex-9) in non-diabetic subjects with prior GB compared to matched subjects with SG and non-surgical controls. In this setting, GLP-1R blockade had no effect on insulin secretion or insulin action, whereas prandial glucagon was enhanced in all 3 groups. Ex-9 infusion raised prandial EGP response to hypoglycemia in every GB subject but had no consistent effects on EGP among subjects with SG or non-operated controls (P < 0.05 for interaction). These results indicate that impaired post-meal glucose counterregulatory response to hypoglycemia after GB is partly mediated by endogenous GLP-1, highlighting a novel mechanism of action of GLP-1R antagonists for the treatment of prandial hypoglycemia in this population.
Collapse
|
8
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Differential effect of gastric bypass versus sleeve gastrectomy on insulinotropic action of endogenous incretins. Obesity (Silver Spring) 2023; 31:2774-2785. [PMID: 37853989 PMCID: PMC10593483 DOI: 10.1002/oby.23872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Prandial hyperinsulinemia after Roux-en-Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-g oral glucose ingestion were compared between ten nondiabetic participants with GB versus nine matched individuals with SG and seven nonoperated normal glucose tolerant control individuals (CN) with and without administration of 200 mg of sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among three groups. Increasing plasma concentrations of endogenous incretins by two- to three-fold diminished prandial glycemia and increased β-cell secretion in all three groups (p < 0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p < 0.05 for interaction). However, plot of the slope of ISR (from premeal to peak values) versus plasma glucagon-like peptide-1 concentration was smaller after GB compared with SG and CN. CONCLUSIONS After GB, increasing incretin activity augments prandial β-cell response whereas the β-cell sensitivity to increasing plasma concentrations of endogenous incretin is diminished.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- STVHCS, Audie Murphy Hospital, San Antonio, TX, United States
| | - Richard Peterson
- Department of Surgery, University of Texas at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas at San Antonio, San Antonio, TX, United States
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
9
|
Salehi M, Tripathy D, Peterson R, Honka H, Pezzica S, DeFronzo R, Gastaldelli A. Bariatric Surgery Alters the Postprandial Recovery From Hypoglycemia, Mediated by Cholinergic Signal. Diabetes 2023; 72:1374-1383. [PMID: 37467435 PMCID: PMC10545558 DOI: 10.2337/db23-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Roux-en-Y gastric bypass (GB) and sleeve gastrectomy (SG) surgeries increase prandial insulin and glucagon secretion but reduce the endogenous glucose production (EGP) response to hypoglycemia in comparison with control subjects who had not undergone gastric surgery (CN), suggesting that parasympathetic nervous system (PNS) plays a role. Here, we investigated the effect of acute PNS blockade on the post-meal counterregulatory response to insulin-induced hypoglycemia in GB and SG compared with CN. Glucose kinetics and islet cell secretion were measured in nine subjects without diabetes with GB and seven with SG and five CN during hyperinsulinemic-hypoglycemic clamp (∼3.2 mmol/L) combined with meal ingestion on two separate days with and without intravenous atropine infusion. Glucose and hormonal levels were similar at baseline and during steady-state hypoglycemia before meal ingestion in three groups and unaffected by atropine. Atropine infusion diminished prandial systemic appearance of ingested glucose (RaO) by 30%, EGP by 40%, and glucagon response to hypoglycemia by 90% in CN. In GB or SG, blocking PNS had no effect on the RaO or meal-induced hyperglucagonemia but increased EGP in SG without any effect in GB (P < 0.05 interaction). These findings indicate that cholinergic signal contributes to the recovery from hypoglycemia by meal consumption in humans. However, bariatric surgery dissipates PNS-mediated physiologic responses to hypoglycemia in the fed state. ARTICLE HIGHLIGHTS Rerouted gut after Roux-en-Y gastric bypass (GB) and, to a lesser degree, after sleeve gastrectomy (SG) leads to larger glucose excursion and lower nadir glucose, predisposing individuals to hypoglycemia. Despite prandial hyperglucagonemia, endogenous glucose production response to hypoglycemia is reduced after GB or SG. Parasympathetic nervous system (PNS) activity plays a key role in regulation of glucose kinetics and islet cell function. We examined the effect of acute PNS blockade on counterregulatory glucose and islet cell response to meal ingestion during insulin-induced hypoglycemia among GB, SG, and control subjects who had not had gastric surgery. Our findings demonstrate that cholinergic signal is critical in the recovery from hypoglycemia by meal ingestion in humans who have not had gastric surgery, although prandial PNS-mediated physiologic responses to hypoglycemia are differentially changed by GB and SG.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Audie L. Murphy Memorial Veterans’ Hospital, South Texas Veterans Health Care System, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Richard Peterson
- Department of Surgery, The University of Texas at San Antonio, San Antonio, TX
| | - Henri Honka
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
10
|
Alkhaled L, Al-Kurd A, Butsch WS, Kashyap SR, Aminian A. Diagnosis and management of post-bariatric surgery hypoglycemia. Expert Rev Endocrinol Metab 2023; 18:459-468. [PMID: 37850227 DOI: 10.1080/17446651.2023.2267136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION While bariatric surgery remains the most effective treatment for obesity that allows substantial weight loss with improvement and possibly remission of obesity-associated comorbidities, some postoperative complications may occur. Managing physicians need to be familiar with the common problems to ensure timely and effective management. Of these complications, postoperative hypoglycemia is an increasingly recognized complication of bariatric surgery that remains underreported and underdiagnosed. AREA COVERED This article highlights the importance of identifying hypoglycemia in patients with a history of bariatric surgery, reviews pathophysiology and addresses available nutritional, pharmacological and surgical management options. Systemic evaluation including careful history taking, confirmation of hypoglycemia and biochemical assessment is essential to establish accurate diagnosis. Understanding the weight-dependent and weight-independent mechanisms of improved postoperative glycemic control can provide better insight into the causes of the exaggerated responses that lead to postoperative hypoglycemia. EXPERT OPINION Management of post-operative hypoglycemia can be challenging and requires a multidisciplinary approach. While dietary modification is the mainstay of treatment for most patients, some patients may benefit from pharmacotherapy (e.g. GLP-1 receptor antagonist); Surgery (e.g. reversal of gastric bypass) is reserved for unresponsive severe cases. Additional research is needed to understand the underlying pathophysiology with a primary aim in optimizing diagnostics and treatment options.
Collapse
Affiliation(s)
- Lina Alkhaled
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH USA
| | - Abbas Al-Kurd
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
- Department of General Surgery, Henry Ford Hospital, Detroit, MI USA
| | - W Scott Butsch
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| | - Sangeeta R Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, NY USA
| | - Ali Aminian
- Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
11
|
Cummings C, Jiang A, Sheehan A, Ferraz-Bannitz R, Puleio A, Simonson DC, Dreyfuss JM, Patti ME. Continuous glucose monitoring in patients with post-bariatric hypoglycaemia reduces hypoglycaemia and glycaemic variability. Diabetes Obes Metab 2023; 25:2191-2202. [PMID: 37046360 PMCID: PMC10807851 DOI: 10.1111/dom.15096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
AIM To determine whether continuous glucose monitoring (CGM) can reduce hypoglycaemia in patients with post-bariatric hypoglycaemia (PBH). MATERIALS AND METHODS In an open-label, nonrandomized, pre-post design with sequential assignment, CGM data were collected in 22 individuals with PBH in two sequential phases: (i) masked (no access to sensor glucose or alarms); and (ii) unmasked (access to sensor glucose and alarms for low or rapidly declining sensor glucose). Twelve participants wore the Dexcom G4 device for a total of 28 days, while 10 wore the Dexcom G6 device for a total of 20 days. RESULTS Participants with PBH spent a lower percentage of time in hypoglycaemia over 24 hours with unmasked versus masked CGM (<3.3 mM/L, or <60 mg/dL: median [median absolute deviation {MAD}] 0.7 [0.8]% vs. 1.4 [1.7]%, P = 0.03; <3.9 mM/L, or <70 mg/dL: median [MAD] 2.9 [2.5]% vs. 4.7 [4.8]%; P = 0.04), with similar trends overnight. Sensor glucose data from the unmasked phase showed a greater percentage of time spent between 3.9 and 10 mM/L (70-180 mg/dL) (median [MAD] 94.8 [3.9]% vs. 90.8 [5.2]%; P = 0.004) and lower glycaemic variability over 24 hours (median [MAD] mean amplitude of glycaemic excursion 4.1 [0.98] vs. 4.4 [0.99] mM/L; P = 0.04). During the day, participants also spent a greater percentage of time in normoglycaemia with unmasked CGM (median [MAD] 94.2 [4.8]% vs. 90.9 [6.2]%; P = 0.005), largely due to a reduction in hyperglycaemia (>10 mM/L, or 180 mg/dL: median [MAD] 1.9 [2.2]% vs. 3.9 [3.6]%; P = 0.02). CONCLUSIONS Real-time CGM data and alarms are associated with reductions in low sensor glucose, elevated sensor glucose, and glycaemic variability. This suggests CGM allows patients to detect hyperglycaemic peaks and imminent hypoglycaemia, allowing dietary modification and self-treatment to reduce hypoglycaemia. The use of CGM devices may improve safety in PBH, particularly for patients with hypoglycaemia unawareness.
Collapse
Affiliation(s)
- Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Alex Jiang
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Amanda Sheehan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Rafael Ferraz-Bannitz
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Alexa Puleio
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Donald C. Simonson
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Tripyla A, Herzig D, Reverter-Branchat G, Pavan J, Schiavon M, Eugster PJ, Grouzmann E, Nakas CT, Sauvinet V, Meiller L, Zehetner J, Giachino D, Nett P, Gawinecka J, Del Favero S, Thomas A, Thevis M, Dalla Man C, Bally L. Counter-regulatory responses to postprandial hypoglycaemia in patients with post-bariatric hypoglycaemia vs surgical and non-surgical control individuals. Diabetologia 2023; 66:741-753. [PMID: 36648553 PMCID: PMC9947092 DOI: 10.1007/s00125-022-05861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycaemia is an increasingly recognised complication of bariatric surgery, manifesting particularly after Roux-en-Y gastric bypass. While hyperinsulinaemia is an established pathophysiological feature, the role of counter-regulation remains unclear. We aimed to assess counter-regulatory hormones and glucose fluxes during insulin-induced postprandial hypoglycaemia in patients with post-bariatric hypoglycaemia after Roux-en-Y gastric bypass vs surgical and non-surgical control individuals. METHODS In this case-control study, 32 adults belonging to four groups with comparable age, sex and BMI (patients with post-bariatric hypoglycaemia, Roux-en-Y gastric bypass, sleeve gastrectomy and non-surgical control individuals) underwent a postprandial hypoglycaemic clamp in our clinical research unit to reach the glycaemic target of 2.5 mmol/l 150-170 min after ingesting 15 g of glucose. Glucose fluxes were assessed during the postprandial and hypoglycaemic period using a dual-tracer approach. The primary outcome was the incremental AUC of glucagon during hypoglycaemia. Catecholamines, cortisol, growth hormone, pancreatic polypeptide and endogenous glucose production were also analysed during hypoglycaemia. RESULTS The rate of glucose appearance after oral administration, as well as the rates of total glucose appearance and glucose disappearance, were higher in both Roux-en-Y gastric bypass groups vs the non-surgical control group in the early postprandial period (all p<0.05). During hypoglycaemia, glucagon exposure was significantly lower in all surgical groups vs the non-surgical control group (all p<0.01). Pancreatic polypeptide levels were significantly lower in patients with post-bariatric hypoglycaemia vs the non-surgical control group (median [IQR]: 24.7 [10.9, 38.7] pmol/l vs 238.7 [186.3, 288.9] pmol/l) (p=0.005). Other hormonal responses to hypoglycaemia and endogenous glucose production did not significantly differ between the groups. CONCLUSIONS/INTERPRETATION The glucagon response to insulin-induced postprandial hypoglycaemia is lower in post-bariatric surgery individuals compared with non-surgical control individuals, irrespective of the surgical modality. No significant differences were found between patients with post-bariatric hypoglycaemia and surgical control individuals, suggesting that impaired counter-regulation is not a root cause of post-bariatric hypoglycaemia. TRIAL REGISTRATION ClinicalTrials.gov NCT04334161.
Collapse
Affiliation(s)
- Afroditi Tripyla
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gemma Reverter-Branchat
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jacopo Pavan
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Philippe J Eugster
- Laboratory of Catecholamines and Peptides, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Laboratory of Catecholamines and Peptides, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christos T Nakas
- School of Agricultural Sciences, Laboratory of Biometry, University of Thessaly, Volos, Greece
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valérie Sauvinet
- Centre de Recherche Nutrition Humaine Rhône-Alpes, Univ-Lyon, Inserm, INRAe, Claude Bernard Lyon1 University, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Laure Meiller
- Centre de Recherche Nutrition Humaine Rhône-Alpes, Univ-Lyon, Inserm, INRAe, Claude Bernard Lyon1 University, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Joerg Zehetner
- Department of Visceral Surgery, Hirslanden Clinic Beau-Site, Bern, Switzerland
| | - Daniel Giachino
- Department of Visceral Surgery, Lindenhofspital, Bern, Switzerland
| | - Philipp Nett
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joanna Gawinecka
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andreas Thomas
- Institute of Biochemistry / Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Salehi M, Peterson R, Tripathy D, Pezzica S, DeFronzo R, Gastaldelli A. Insulinotropic effect of endogenous incretins is greater after gastric bypass than sleeve gastrectomy despite diminished beta-cell sensitivity to plasma incretins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287755. [PMID: 37034666 PMCID: PMC10081422 DOI: 10.1101/2023.03.28.23287755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND/AIMS Prandial hyperinsulinemia after Roux-en Y gastric bypass surgery (GB), and to lesser degree after sleeve gastrectomy (SG), has been attributed to rapid glucose flux from the gut and increased insulinotropic gut hormones. However, β-cell sensitivity to exogenous incretin is markedly reduced after GB. This study examines the effect of GB versus SG on prandial glycemia and β-cell response to increasing concentrations of endogenous incretins. METHODS Glucose kinetics, insulin secretion rate (ISR), and incretin responses to 50-gram oral glucose ingestion were compared between 10 non-diabetic subjects with GB versus 9 matched individuals with SG and 7 non-operated normal glucose tolerant controls (CN) on two days with and without administration of 200 mg sitagliptin. RESULTS Fasting glucose and hormonal levels were similar among 3 groups. Increasing plasma concentrations of endogenous incretins by 2-3-fold diminished post-OGTT glycemia and increased β-cell secretion in all 3 groups (p<0.05), but insulin secretion per insulin sensitivity (i.e., disposition index) was increased only in GB (p<0.05 for interaction). As a result, sitagliptin administration led to hypoglycemia in 3 of 10 GB. Yet, plot of the slope of ISR versus the increase in endogenous incretin concentration was smaller after GB compared to both SG and CN. CONCLUSION Augmented glycemic-induced β-cell response caused by enhanced incretin activity is unique to GB and not shared with SG. However, the β-cell sensitivity to increasing concentrations of endogenous incretin is smaller after bariatric surgery, particularly after GB, compared to non-operated controls, indicating a long-term adaptation of gut-pancreas axis after these procedures. HIGHLIGHTS What is known?: Glycemic effects of gastric bypass (GB) and sleeve gastrectomy (SG) is attributed to rapid nutrient flux and enhanced insulinotropic effects of gut hormones but β-cell sensitivity to exogenous GLP-1 or GIP is diminished after GB. What the present findings add?: Post-OGTT β-cell sensitivity to enhanced endogenous incretins by DPP4i is markedly reduced in bariatric subjects versus non-operated controls, and yet insulin secretory response (disposition index) is increased leading to hypoglycemia in GB and not SG. Significance?: Blunted sensitivity to GLP-1 may represent β-cell adaptation to massive elevation in GLP-1 secretion following bariatric surgery to protect against hypoglycemia.The differential effect of enhanced concentrations of incretins on post-OGTT insulin response (disposition index) among GB versus SG highlights a distinct adaptive process among the two procedures.Augmented insulinotropic effects of gut hormones on postprandial insulin secretory response after GB despite a reduced beta-cell sensitivity to plasma concentrations of GLP-1 makes a case for non-hormonal mechanisms of GLP-1 action after GB.Better understanding of long-term effects of bariatric surgery on gut-pancreas axis activity is critical in development of GLP-1-based strategies to address glucose abnormalities (both hyperglycemia and hypoglycemia) in these settings.
Collapse
|
14
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
15
|
Salehi M, DeFronzo R, Gastaldelli A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. Int J Mol Sci 2022; 23:ijms23147667. [PMID: 35887007 PMCID: PMC9324232 DOI: 10.3390/ijms23147667] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The liver has the capacity to regulate glucose metabolism by altering the insulin clearance rate (ICR). The decreased fasting insulin concentrations and enhanced prandial hyperinsulinemia after Roux-en-Y gastric-bypass (GB) surgery and sleeve gastrectomy (SG) are well documented. Here, we investigated the effect of GB or SG on insulin kinetics in the fasting and fed states. Method: ICR was measured (i) during a mixed-meal test (MMT) in obese non-diabetic GB (n = 9) and SG (n = 7) subjects and (ii) during a MMT combined with a hyperinsulinemic hypoglycemic clamp in the same GB and SG subjects. Five BMI-matched and non-diabetic subjects served as age-matched non-operated controls (CN). Results: The enhanced ICR during the fasting state after GB and SC compared with CN (p < 0.05) was mainly attributed to augmented hepatic insulin clearance rather than non-liver organs. The dose-response slope of the total insulin extraction rate (InsExt) of exogenous insulin per circulatory insulin value was greater in the GB and SG subjects than in the CN subjects, despite the similar peripheral insulin sensitivity among the three groups. Compared to the SG or the CN subjects, the GB subjects had greater prandial insulin secretion (ISR), independent of glycemic levels. The larger post-meal ISR following GB compared with SG was associated with a greater InsExt until it reached a plateau, leading to a similar reduction in meal-induced ICR among the GB and SG subjects. Conclusions: GB and SG alter ICR in the presence or absence of meal stimulus. Further, altered ICR after bariatric surgery results from changes in hepatic insulin clearance and not from a change in peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX 78229, USA
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
| | - Amalia Gastaldelli
- Division of Diabetes, University of Texas Health at San Antonio, San Antonio, TX 78229, USA;
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (M.S.); (A.G.); Tel.: +1-(210)-450-8560 (M.S.)
| |
Collapse
|