1
|
Fu Y, Hu P, Hu Y, Fang Y, Zhou Y, Shi Y, Yang K, Fu T, Li W, Gritskevitch ER, Jin L, Lyu J, Zhao Q. Hepatocyte-specific RAP1B deficiency ameliorates high-fat diet-induced obesity and liver inflammation in mice. Diabetes Obes Metab 2025; 27:3036-3049. [PMID: 40083059 DOI: 10.1111/dom.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
AIM This study investigated the role of RAP1B in hepatic lipid metabolism and its implications in obesity and associated metabolic disorders, focusing on the molecular mechanisms through which RAP1B influences lipid accumulation, inflammation and oxidative stress in liver tissues and hepatocyte cell lines. MATERIALS AND METHODS Liver-specific RAP1B-knockout (LKO) and overexpression (OE) mice were generated and fed a high-fat diet for 18 weeks to evaluate systemic and hepatic metabolic changes. Comprehensive metabolic phenotyping included measurements of body weight, body fat content, activity levels, energy expenditure (EE), respiratory exchange ratio (RER), glucose tolerance test and insulin tolerance test. RAP1B-knockdown AML12 hepatocytes were used for in vitro studies. Comprehensive transcriptome and metabolome analyses identified differentially expressed genes and key metabolic shifts. Biochemical and histological analyses were performed to assess lipid accumulation, oxidative stress and inflammatory markers. RESULTS We found that LKO mice exhibited significant reductions in body weight, fat pad size and liver mass, along with decreased hepatic lipid accumulation due to enhanced lipid breakdown. These mice demonstrated improved glucose tolerance and insulin sensitivity without changes in food intake. Liver histology showed reduced F4/80-positive macrophage infiltration, indicating decreased inflammatory cell recruitment. Additionally, markers of oxidative stress were significantly lower, and molecular analysis revealed downregulation of the MAPK(p38) and NF-κB signaling pathways, further supporting an anti-inflammatory hepatic environment. In contrast, OE mice showed increased liver weight, aggravated hepatic lipid accumulation driven by enhanced lipogenesis, worsened insulin resistance and elevated inflammation. CONCLUSIONS This study highlights RAP1B's pivotal role in hepatic metabolism and positions it as a potential therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yinxu Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Pingyi Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yanyang Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yu Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yaping Zhou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Weijia Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- International Sakharov Environmental Institute, Belarusian State University, Minsk, Republic of Belarus
| | | | - Liqin Jin
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiongya Zhao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Xiao Y, Li Y, Gu J, Lu S, Yu S, Song C. Circadian rhythm gene cryptochrome 2 (Cry2) interacts with lipid metabolism to promote vascular aging. Arch Gerontol Geriatr 2025; 131:105761. [PMID: 39879691 DOI: 10.1016/j.archger.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Vascular aging is the basis of many chronic diseases of the aged, such as hypertension, coronary heart disease and stroke. OBJECTIVE This study aims to deepen our understanding of the pathological mechanisms of vascular aging by combining multiple big data research methods, and reveal potential therapeutic targets and biomarkers. METHODS WGCNA method was used to integrate the aortic transcriptome data of multiple age stages, and extract the key module and key pathway. The gene of aortic rhythm was integrated by JTK algorithm. Correlation calculation was performed for core gene and associated pathways. Finally, the expression of the core gene and their interaction with the associated pathways were verified in cell senescence. RESULTS WGCNA showed that circadian rhythm is the key pathway of vascular aging, and circadian rhythm and metabolism interact to promote the occurrence of vascular aging. Cry2 has been identified as the most critical core rhythm gene. Lipid metabolism is the most Cry2-related subpathway, among which phospholipid metabolism and Serac1 have the strongest and most significant correlation with Cry2. Cry2 is mainly distributed in endothelial cells in both young and senescent blood vessels, and affects five lipid-related metabolic processes including lipid transport during endothelial senescence. CONCLUSION This study suggests that circadian rhythm and Cry2 may be potential targets of vascular aging, and further studies on their interaction with lipid metabolism will provide effective strategies for the prevention and treatment of age-related vascular diseases.
Collapse
Affiliation(s)
- Yu Xiao
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130041, PR China
| | - Jinning Gu
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Shan Lu
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Shuang Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China
| | - Chunli Song
- Department of special needs ward and general practice, Second Affiliated Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
3
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|