1
|
Iosef C, Matusa AM, Han VKM, Fraser DD. Endocrine dysregulation in COVID-19: molecular mechanisms and insights. Front Endocrinol (Lausanne) 2024; 15:1459724. [PMID: 39502570 PMCID: PMC11534806 DOI: 10.3389/fendo.2024.1459724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
This review describes the impact of COVID-19 on the endocrine system, focusing on cortisol signaling and growth factor-induced endocrine resistance. As expected, SARS-CoV-2 infection induces systemic inflammation, resulting in stimulation of the adrenal glands leading to elevated cortisol levels with normal adrenocorticotropic hormone (ACTH) levels. The cytokine storm could also stimulate cortisol production. However, in some instances, cortisol levels rise independently of ACTH due to a phenomenon known as "pseudo-Cushing's syndrome," where adrenal glands become less responsive to ACTH. Plasma proteomic analyses showed that this pattern was variably observed among COVID-19 patients, potentially involving calcium dysregulation and GNAS-regulated activities, ultimately impacting the regulation of microvascular permeability. COVID-19 also exhibited a syndrome resembling endocrine resistance, governed by receptor tyrosine kinase signaling pathways. Mild cases displayed elevated activity of EGFR and MMP9, along with increased expression of survival factors like Bax and Bcl2. In contrast, more severe cases involved IGFR-I and enhanced NOTCH signaling, with altered expression of Bcl2, AKT1, and MAPK8. In summary, these findings describe the complex interplay between COVID-19 and endocrine pathology, particularly endocrine resistance. These insights suggest potential endocrine targets for therapeutic interventions to improve short- and long-term outcomes for COVID-19 patients.
Collapse
Affiliation(s)
- Cristiana Iosef
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | | | - Victor K. M. Han
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Douglas D. Fraser
- Children’s Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| |
Collapse
|
2
|
Nhau PT, Gamede M, Sibiya N. COVID-19-Induced Diabetes Mellitus: Comprehensive Cellular and Molecular Mechanistic Insights. PATHOPHYSIOLOGY 2024; 31:197-209. [PMID: 38651404 PMCID: PMC11036300 DOI: 10.3390/pathophysiology31020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Despite evidence demonstrating the risks of developing diabetes mellitus because of SARS-CoV-2, there is, however, insufficient scientific data available to elucidate the relationship between diabetes mellitus and COVID-19. Research indicates that SARS-CoV-2 infection is associated with persistent damage to organ systems due to the systemic inflammatory response. Since COVID-19 is known to induce these conditions, further investigation is necessary to fully understand its long-term effects on human health. Consequently, it is essential to consider the effect of the COVID-19 pandemic when predicting the prevalence of diabetes mellitus in the future, especially since the incidence of diabetes mellitus was already on the rise before the pandemic. Additional research is required to fully comprehend the impact of SARS-CoV-2 infection on glucose tolerance and insulin sensitivity. Therefore, this article delves deeper into the current literature and links the perceived relationship between SARS-CoV-2 and diabetes. In addition, the article highlights the necessity for further research to fully grasp the mechanisms that SARS-CoV-2 utilises to induce new-onset diabetes. Where understanding and consensus are reached, therapeutic interventions to prevent the onset of diabetes could be proposed. Lastly, we propose advocating for the regular screening of diabetes and pre-diabetes, particularly for the high-risk population with a history of COVID-19 infection.
Collapse
Affiliation(s)
- Praise Tatenda Nhau
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa;
| | - Mlindeli Gamede
- Human Physiology Department, University of Pretoria, Pretoria 0028, South Africa;
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa;
| |
Collapse
|
3
|
Yu EA, Jackman RP, Glesby MJ, Narayan KV. Bidirectionality between Cardiometabolic Diseases and COVID-19: Role of Humoral Immunity. Adv Nutr 2023; 14:1145-1158. [PMID: 37302794 PMCID: PMC10256583 DOI: 10.1016/j.advnut.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiometabolic diseases and abnormalities have recently emerged as independent risk factors of coronavirus disease 2019 (COVID-19) severity, including hospitalizations, invasive mechanical ventilation, and mortality. Determining whether and how this observation translates to more effective long-term pandemic mitigation strategies remains a challenge due to key research gaps. Specific pathways by which cardiometabolic pathophysiology affects humoral immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vice versa, remain unclear. This review summarizes current evidence of the bidirectional influences between cardiometabolic diseases (diabetes, adiposity, hypertension, CVDs) and SARS-CoV-2 antibodies induced from infection and vaccination based on human studies. Ninety-two studies among >408,000 participants in 37 countries on 5 continents (Europe, Asia, Africa, and North and South America) were included in this review. Obesity was associated with higher neutralizing antibody titers following SARS-CoV-2 infection. Most studies conducted prior to vaccinations found positive or null associations between binding antibodies (levels, seropositivity) and diabetes; after vaccinations, antibody responses did not differ by diabetes. Hypertension and CVDs were not associated with SARS-CoV-2 antibodies. Findings underscore the importance of elucidating the extent that tailored recommendations for COVID-19 prevention, vaccination effectiveness, screening, and diagnoses among people with obesity could reduce disease burden caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Elaine A Yu
- Vitalant Research Institute, San Francisco, CA; University of California, San Francisco, San Francisco, CA.
| | - Rachael P Jackman
- Vitalant Research Institute, San Francisco, CA; University of California, San Francisco, San Francisco, CA
| | - Marshall J Glesby
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Km Venkat Narayan
- Rollins School of Public Health, Emory University, Atlanta, GA; Emory Global Diabetes Research Center of Woodruff Health Sciences Center, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Wang L, Western D, Timsina J, Repaci C, Song WM, Norton J, Kohlfeld P, Budde J, Climer S, Butt OH, Jacobson D, Garvin M, Templeton AR, Campagna S, O’Halloran J, Presti R, Goss CW, Mudd PA, Ances BM, Zhang B, Sung YJ, Cruchaga C. Plasma proteomics of SARS-CoV-2 infection and severity reveals impact on Alzheimer's and coronary disease pathways. iScience 2023; 26:106408. [PMID: 36974157 PMCID: PMC10010831 DOI: 10.1016/j.isci.2023.106408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes. We subsequently created highly accurate models that distinctively predict infection, ventilation, and death. These proteins were enriched in specific biological processes including cytokine signaling, Alzheimer's disease, and coronary artery disease. Mendelian randomization and gene network analyses identified eight causal proteins and 141 highly connected hub proteins including 35 with known drug targets. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes, reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Charlie Repaci
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlee Climer
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Omar H. Butt
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alan R. Templeton
- Department of Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Shawn Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Jane O’Halloran
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Presti
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Charles W. Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A. Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
5
|
Masi D, Gangitano E, Criniti A, Ballesio L, Anzuini A, Marino L, Gnessi L, Angeloni A, Gandini O, Lubrano C. Obesity-Associated Hepatic Steatosis, Somatotropic Axis Impairment, and Ferritin Levels Are Strong Predictors of COVID-19 Severity. Viruses 2023; 15:v15020488. [PMID: 36851702 PMCID: PMC9968194 DOI: 10.3390/v15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The full spectrum of SARS-CoV-2-infected patients has not yet been defined. This study aimed to evaluate which parameters derived from CT, inflammatory, and hormonal markers could explain the clinical variability of COVID-19. We performed a retrospective study including SARS-CoV-2-infected patients hospitalized from March 2020 to May 2021 at the Umberto I Polyclinic of Rome. Patients were divided into four groups according to the degree of respiratory failure. Routine laboratory examinations, BMI, liver steatosis indices, liver CT attenuation, ferritin, and IGF-1 serum levels were assessed and correlated with severity. Analysis of variance between groups showed that patients with worse prognoses had higher BMI and ferritin levels, but lower liver density, albumin, GH, and IGF-1. ROC analysis confirmed the prognostic accuracy of IGF-1 in discriminating between patients who experienced death/severe respiratory failure and those who did not (AUC 0.688, CI: 0.587 to 0.789, p < 0.001). A multivariate analysis considering the degrees of severity of the disease as the dependent variable and ferritin, liver density, and the standard deviation score of IGF-1 as regressors showed that all three parameters were significant predictors. Ferritin, IGF-1, and liver steatosis account for the increased risk of poor prognosis in COVID-19 patients with obesity.
Collapse
Affiliation(s)
- Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Criniti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Ballesio
- Department of Radiology, Anatomo–Pathology and Oncology, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Anzuini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00185 Rome, Italy
- Emergency Medicine Unit, Department of Emergency-Acceptance, Critical Areas and Trauma, Policlinico “Umberto I”, 00161 Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
- Emergency Medicine Unit, Department of Emergency-Acceptance, Critical Areas and Trauma, Policlinico “Umberto I”, 00161 Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|