1
|
Özel HF, Alpay Ş, Asker E, Gültekin ES, Kazdağlı H. SGLT-2 inhibitors on cardiac autonomic function in individuals with and without type 2 diabetes mellitus. J Diabetes Complications 2025; 39:109021. [PMID: 40158451 DOI: 10.1016/j.jdiacomp.2025.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have emerged as key therapeutic agents in managing type 2 diabetes mellitus (T2DM) and obesity, offering benefits that extend beyond glycemic control. This review examines the role of SGLT-2 inhibitors in modulating cardiac autonomic function, with a particular focus on heart rate variability (HRV) as a biomarker of autonomic balance. These agents improve metabolic profiles through enhanced glucosuria, natriuresis, and weight loss, while concurrently reducing blood pressure. Importantly, they also attenuate sympathetic nervous system overactivity and promote parasympathetic modulation, which may lower the risk of adverse cardiovascular events. The underlying mechanisms include not only the metabolic effects but also anti-inflammatory and antioxidative actions, which together contribute to improved endothelial function and vascular health. Advanced HRV analyses, encompassing traditional time and frequency domain methods as well as nonlinear approaches, have proven valuable in detecting early autonomic dysfunction in high-risk populations. Some studies suggest that SGLT-2 inhibitors may be associated with improvements in HRV parameters, such as increased SDNN and RMSSD and a reduced LF/HF ratio. However, findings are inconsistent across studies, and further research is needed to determine the extent and mechanisms of these potential effects. Although these findings are promising, further standardized, long-term studies are essential to clarify the mechanisms and optimal therapeutic strategies involving SGLT-2 inhibitors in the management of autonomic dysfunction. Future research should also explore the synergistic potential of combining SGLT-2 inhibitors with other cardiometabolic therapies to enhance cardiovascular outcomes in individuals with and without T2DM.
Collapse
Affiliation(s)
- Hasan Fehmi Özel
- Vocational School of Health Services, Manisa Celal Bayar University, Manisa, Türkiye
| | - Şüheda Alpay
- Physiology Dept., Faculty of Medicine, Manisa Celal Bayar University, Manisa, Türkiye
| | - Emre Asker
- Physiology Dept., Faculty of Medicine, Manisa Celal Bayar University, Manisa, Türkiye; Pathology Dept., Faculty of Medicine, Trakya University, Edirne, Türkiye
| | - Elif Sıdal Gültekin
- Family Medicine Dept., Faculty of Medicine, Manisa Celal Bayar University, Manisa, Türkiye
| | - Hasan Kazdağlı
- Vocational School of Health Services, Izmir University of Economics, Izmir, Türkiye.
| |
Collapse
|
2
|
Su KC, Wu KC, Chou KR, Huang CH. Tongue Muscle Training App for Middle-Aged and Older Adults Incorporating Flow-Based Gameplay: Design and Feasibility Pilot Study. JMIR Serious Games 2025; 13:e53045. [PMID: 39791331 PMCID: PMC11737528 DOI: 10.2196/53045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Background Complications due to dysphagia are increasingly prevalent among older adults; however, the tediousness and complexity of conventional tongue rehabilitation treatments affect their willingness to rehabilitate. It is unclear whether integrating gameplay into a tongue training app is a feasible approach to rehabilitation. Objective Tongue training has been proven helpful for dysphagia treatment. Following the development of a tongue training app, a feasibility trial aimed to identify physiological and psychological factors that affect user and flow experience and explored whether training specialized muscles could produce a flow experience for optimal immersion. We aimed to provide a useful tool for medical rehabilitation so that older adults could retain tongue muscle flexibility. Methods After consulting professional nurses, we developed a mobile gaming app for middle-aged and older adults to train their tongue muscles. This pilot study used an image recognition system to detect the tongue movements of 32 healthy middle-aged and older adults (7 males, 21.9%; 25 females, 78.1%) during 3 game training tasks, each requiring different reaction speeds. Their physiological and psychological signals, as well as the results of the Flow State Scale 2 (FSS2) questionnaire, were used for correlation analysis regarding relevant flow experiences to establish and evaluate the feasibility of our method. Results Through exploratory factor analyses, a 2-factor (operation and immersion) structure was confirmed to have an adequate model fit (χ²36=448.478; P<.001; Kaiser-Meyer-Olkin=0.757) and internal consistency reliability (Cronbach α=0.802). The slow, medium, and fast levels all significantly affected the FSS2 score for operation (P=.001), the National Aeronautics and Space Administration Task Load Index (P<.001), and flow distance (P<.001). K-means clustering revealed that participants could be further categorized into 3 groups. Through the analysis of changes in the participants' physiological and psychological signals for each given task, Pearson correlation indicated that changes were primarily related to flow distance. For the 12 indicators measured in this study, the low, medium, and high operation groups showed significance in 58% (7/12), 50% (6/12), and 25% (3/12) of the indicators, respectively. Similarly, the low, medium, and high immersion groups had changes in 50% (6/12), 33% (4/12), and 17% (2/12) of indicators, respectively. Conclusions Our research supports the further development of a gaming app to aid older adults with tongue muscle training and measure flow using physiological and psychological signals to enhance training accuracy and feasibility. Next, we aim to conduct a randomized pilot trial, improve app functions, offer alternative rehabilitation options, and encourage long-term participation. Future goals include enhancing long-term efficacy, diversifying training modes, and adding a multiuser interactive option for an added challenge.
Collapse
Affiliation(s)
- Kuan-Chu Su
- Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913
| | - Ko-Chiu Wu
- Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913
| | - Kuei-Ru Chou
- School of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsu Huang
- Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913
| |
Collapse
|
3
|
Dimitriadis K, Pitsiori D, Alexiou P, Pyrpyris N, Sakalidis A, Beneki E, Iliakis P, Tatakis F, Theofilis P, Tsioufis P, Konstantinidis D, Aggeli K, Tsioufis K. Modulating Sympathetic Nervous System With the Use of SGLT2 Inhibitors: Where There Is Smoke, There Is Fire? J Cardiovasc Pharmacol 2025; 85:12-20. [PMID: 39436317 DOI: 10.1097/fjc.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Heart failure (HF) has become even more prevalent in recent years, because of improved diagnostics and an increase in the risk factors predisposing to its pathology. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) emerged as one of the key pharmacotherapy options for both reduced and preserved ejection fraction, providing cardio- and renoprotection and improving mortality and cardiovascular (CV) outcomes. The pleiotropism of SGLT2i has led to multiple efforts to understand their distinct pathophysiologic interactions with various pathways, including microcirculation, endothelial dysfunction, and inflammation. More recently, the role of SGLT2i on the sympathetic nervous system (SNS) is starting to be recognized, especially because observations of retained or reduced heart rate despite volume contraction have been noted by investigators in the large clinical trials testing the safety and efficacy of these agents. Both preclinical and clinical studies have been performed, with conflicting results. Interestingly, in both settings, although there are indications of SNS modulation by SGLT2i, other studies contradict such findings, without showing, however, worsening of the autonomic homeostasis. Given the importance of neuromodulation in HF, in both pharmacologic and interventional therapies, in this review, we aim to describe the role of SNS in CV disease, focusing on HF, analyze preclinical and clinical data regarding the efficacy of SGLT2i in modulating autonomic dysfunction by examining various markers of SNS activation, and provide the most plausible theoretical backgrounds on the mechanism of benefit of SNS from the inhibition of SGLT2 receptors.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang W, Shao M, Du W, Xu Y. Impact of exhaustive exercise on autonomic nervous system activity: insights from HRV analysis. Front Physiol 2024; 15:1462082. [PMID: 39691095 PMCID: PMC11649657 DOI: 10.3389/fphys.2024.1462082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Exhaustive exercise is a common training method in sports, but its impact on the autonomic nervous system of the human body remains unclear. Understanding the effects of exhaustive exercise on the body and its connection with the autonomic nervous system and central nervous system is crucial for guiding healthy training methods. Methods Twenty-three participants were selected, and exhaustive exercise intervention was performed using the Bruce Protocol. By measuring heart rate variability (HRV), the effects of exhaustive exercise on the autonomic nervous system function were analyzed. Results After exhaustive exercise, time-domain indices SDNN, RMSSD, and PNN50 all significantly decreased, with changes reaching significant levels (p < 0.01). Among them, the decrease in pNN50 was particularly pronounced, with a change rate of -94.55%. Frequency-domain indices VLF, LF, and HF also showed significant decreases (p < 0.01), but the ratio of LF to HF showed an upward trend (p < 0.01), with LF showing a greater decrease. Nonlinear indices SD1 and SD2 showed extremely significant decreases (p < 0.01), and the SD2/SD1 ratio showed a significant increase (p < 0.01), indicating significant changes in HRV nonlinear characteristics after exercise. Discussion Exhaustive exercise leads to a decrease in autonomic nervous system activity and an increase in sympathetic nervous system activity. These findings underscore the profound impact of exhaustive exercise on the autonomic nervous system, with implications for understanding the physiological responses to intense physical exertion. Further research is warranted to explore the long-term effects of exhaustive exercise on autonomic regulation and its potential implications for training methodologies and athlete health.
Collapse
Affiliation(s)
- Weichao Wang
- School of Physical Education, Northwest Normal University, Lanzhou, Gansu, China
| | - Mingrui Shao
- School of Physical Education, Shanghai Normal University, Shanghai, China
| | - Weiping Du
- Sports institute, Ningxia Nomal University, Guyuan, Ningxia, China
| | - Yanjun Xu
- Department of Physical Education, Shanghai University of Finance and Economics, Shanghai, China
| |
Collapse
|
5
|
Eleftheriadou A, Spallone V, Tahrani AA, Alam U. Cardiovascular autonomic neuropathy in diabetes: an update with a focus on management. Diabetologia 2024; 67:2611-2625. [PMID: 39120767 PMCID: PMC11604676 DOI: 10.1007/s00125-024-06242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
Cardiovascular autonomic neuropathy (CAN) is an under-recognised yet highly prevalent microvascular complication of diabetes. CAN affects approximately 20% of people with diabetes, with recent studies highlighting the presence of CAN in prediabetes (impaired glucose tolerance and/or impaired fasting glucose), indicating early involvement of the autonomic nervous system. Understanding of the pathophysiology of CAN continues to evolve, with emerging evidence supporting a potential link between lipid metabolites, mitochondrial dysfunction and genetics. Recent advancements, such as streamlining CAN detection through wearable devices and monitoring of heart rate variability, present simplified and cost-effective approaches for early CAN detection. Further research on the optimal use of the extensive data provided by such devices is required. Despite the lack of specific pharmacological interventions targeting the underlying pathophysiology of autonomic neuropathy, several studies have suggested a favourable impact of newer glucose-lowering agents, such as sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, where there is a wealth of clinical trial data on the prevention of cardiovascular events. This review delves into recent developments in the area of CAN, with emphasis on practical guidance to recognise and manage this underdiagnosed condition, which significantly increases the risk of cardiovascular events and mortality in diabetes.
Collapse
Affiliation(s)
- Aikaterini Eleftheriadou
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Vincenza Spallone
- Endocrinology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Abd A Tahrani
- Institute of Metabolism and Systems, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
- Department of Diabetes and Endocrinology, Birmingham Heartlands Hospital, Birmingham, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK.
- Department of Medicine, University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK.
| |
Collapse
|
6
|
Baqai FM, Kitakaze M, Birnbaum Y. Acute Hemodynamic Effects of Empagliflozin: Are They Relevant to the Clinical Practice? Cardiovasc Drugs Ther 2024; 38:769-770. [PMID: 38888831 DOI: 10.1007/s10557-024-07598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Affiliation(s)
| | | | - Yochai Birnbaum
- The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, MS BCM620, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Mondal S, Pramanik S, Khare VR, Fernandez CJ, Pappachan JM. Sodium glucose cotransporter-2 inhibitors and heart disease: Current perspectives. World J Cardiol 2024; 16:240-259. [PMID: 38817648 PMCID: PMC11135334 DOI: 10.4330/wjc.v16.i5.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024] Open
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic medications with remarkable cardiovascular (CV) benefits proven by multiple randomised controlled trials and real-world data. These drugs are also useful in the prevention of CV disease (CVD) in patients with diabetes mellitus (DM). Although DM as such is a huge risk factor for CVD, the CV benefits of SGLT-2i are not just because of antidiabetic effects. These molecules have proven beneficial roles in prevention and management of nondiabetic CVD and renal disease as well. There are various molecular mechanisms for the organ protective effects of SGLT-2i which are still being elucidated. Proper understanding of the role of SGLT-2i in prevention and management of CVD is important not only for the cardiologists but also for other specialists caring for various illnesses which can directly or indirectly impact care of heart diseases. This clinical review compiles the current evidence on the rational use of SGLT-2i in clinical practice.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospitals, Siliguri 734010, West Bengal, India
| | - Vibhu Ranjan Khare
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Cornelius James Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
8
|
Connelly KA, Mazer CD, Puar P, Teoh H, Wang CH, Mason T, Akhavein F, Chang CW, Liu MH, Yang NI, Chen WS, Juan YH, Opingari E, Salyani Y, Barbour W, Pasricha A, Ahmed S, Kosmopoulos A, Verma R, Moroney M, Bakbak E, Krishnaraj A, Bhatt DL, Butler J, Kosiborod MN, Lam CSP, Hess DA, Rizzi Coelho-Filho O, Lafreniere-Roula M, Thorpe KE, Quan A, Leiter LA, Yan AT, Verma S. Empagliflozin and Left Ventricular Remodeling in People Without Diabetes: Primary Results of the EMPA-HEART 2 CardioLink-7 Randomized Clinical Trial. Circulation 2023; 147:284-295. [PMID: 36335517 DOI: 10.1161/circulationaha.122.062769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors have been demonstrated to promote reverse cardiac remodeling in people with diabetes or heart failure. Although it has been theorized that sodium-glucose cotransporter 2 inhibitors might afford similar benefits in people without diabetes or prevalent heart failure, this has not been evaluated. We sought to determine whether sodium-glucose cotransporter 2 inhibition with empagliflozin leads to a decrease in left ventricular (LV) mass in people without type 2 diabetes or significant heart failure. METHODS Between April 2021 and January 2022, 169 individuals, 40 to 80 years of age, without diabetes but with risk factors for adverse cardiac remodeling were randomly assigned to empagliflozin (10 mg/d; n=85) or placebo (n=84) for 6 months. The primary outcome was the 6-month change in LV mass indexed (LVMi) to baseline body surface area as measured by cardiac magnetic resonance imaging. Other measures included 6-month changes in LV end-diastolic and LV end-systolic volumes indexed to baseline body surface area and LV ejection fraction. RESULTS Among the 169 participants (141 men [83%]; mean age, 59.3±10.5 years), baseline LVMi was 63.2±17.9 g/m2 and 63.8±14.0 g/m2 for the empagliflozin- and placebo-assigned groups, respectively. The difference (95% CI) in LVMi at 6 months in the empagliflozin group versus placebo group adjusted for baseline LVMi was -0.30 g/m2 (-2.1 to 1.5 g/m2; P=0.74). Median baseline (interquartile range) NT-proBNP (N-terminal-pro B-type natriuretic peptide) was 51 pg/mL (20-105 pg/mL) and 55 pg/mL (21-132 pg/mL) for the empagliflozin- and placebo-assigned groups, respectively. The 6-month treatment effect of empagliflozin versus placebo (95% CI) on blood pressure and NT-proBNP (adjusted for baseline values) were -1.3 mm Hg (-5.2 to 2.6 mm Hg; P=0.52), 0.69 mm Hg (-1.9 to 3.3 mm Hg; P=0.60), and -6.1 pg/mL (-37.0 to 24.8 pg/mL; P=0.70) for systolic blood pressure, diastolic blood pressure, and NT-proBNP, respectively. No clinically meaningful between-group differences in LV volumes (diastolic and systolic indexed to baseline body surface area) or ejection fraction were observed. No difference in adverse events was noted between the groups. CONCLUSIONS Among people with neither diabetes nor significant heart failure but with risk factors for adverse cardiac remodeling, sodium-glucose cotransporter 2 inhibition with empagliflozin did not result in a meaningful reduction in LVMi after 6 months. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04461041.
Collapse
Affiliation(s)
- Kim A Connelly
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada
| | - C David Mazer
- Department of Anesthesia (C.D.M.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology (K.A.C., C.D.M.), University of Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine (C.D.M.), University of Toronto, ON, Canada
| | - Pankaj Puar
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Hwee Teoh
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Chao-Hung Wang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Tamique Mason
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Farhad Akhavein
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Ching-Wen Chang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Diagnostic Radiology (C.-W.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Min-Hui Liu
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan (M.-H.L.)
| | - Ning-I Yang
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan
| | - Wei-Siang Chen
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine (C.-H.W., C.-W.C., M.-H.L., N.-I.Y., W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan.,Intensive Care Unit, Division of Cardiology, Department of Internal Medicine (W.-S.C.), Keelung Chang Gung Memorial Hospital, Taiwan
| | - Yu-Hsiang Juan
- School of Medicine (C.-H.W., C.-W.C., N.-I.Y., Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Institute for Radiological Research (Y.-H.J.), Chang Gung University, Taoyuan, Taiwan.,Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan (Y.-H.J.)
| | - Erika Opingari
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Yaseen Salyani
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - William Barbour
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.)
| | - Aryan Pasricha
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Health & Exercise Science, Wake Forest University, Winston-Salem, NC (A.P.)
| | - Shamon Ahmed
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, Canada (P.P., S.A.)
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Temerty Faculty of Medicine (E.O., A. Kosmopoulos), University of Toronto, ON, Canada
| | - Raj Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Michael Moroney
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,School of Medicine, Royal College of Surgeons in Ireland, Dublin (Y.S., R.V., M.M.)
| | - Ehab Bakbak
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada
| | - Deepak L Bhatt
- Division of Cardiovascular Medicine, Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX (J.B.).,Department of Medicine, University of Mississippi, Jackson (J.B.)
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City (M.N.K.)
| | - Carolyn S P Lam
- National Heart Centre Singapore (C.S.P.L.).,Division of Cardiology, Duke-National University of Singapore (C.S.P.L.).,Division of Cardiology, Department of Medicine, State University of Campinas (UNICAMP), São Paulo, Brazil (C.S.P.L.)
| | - David A Hess
- Division of Vascular Surgery (D.A.H.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada (W.B., D.A.H.).,Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada (D.A.H.)
| | | | - Myriam Lafreniere-Roula
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Kevin E Thorpe
- Applied Health Research Centre (M.L.-R., K.E.T.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Dana Lana School of Public Health (K.E.T.), University of Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada
| | - Lawrence A Leiter
- Division of Endocrinology and Metabolism (H.T., L.A.L.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada.,Department of Nutritional Sciences (L.A.L.), University of Toronto, ON, Canada
| | - Andrew T Yan
- Division of Cardiology (K.A.C., F.A., A.T.Y.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Medicine (K.A.C., L.A.L., A.T.Y.), University of Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery (P.P., H.T., T.M., E.O., Y.S., W.B., A.P., S.A., A. Kosmopoulos, R.V., M.M., E.B., A. Krishnaraj, A.Q., S.V.), St. Michael's Hospital of Unity Health Toronto, ON, Canada.,Department of Pharmacology and Toxicology (E.B., A. Krishnaraj, D.A.H., S.V.), University of Toronto, ON, Canada.,Department of Surgery (S.V.), University of Toronto, ON, Canada
| |
Collapse
|
9
|
Patoulias D, Katsimardou A, Fragakis N, Papadopoulos C, Doumas M. Effect of SGLT-2 inhibitors on cardiac autonomic function in type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Acta Diabetol 2023; 60:1-8. [PMID: 35986116 DOI: 10.1007/s00592-022-01958-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cardiac autonomic neuropathy (CAN) is a common complication of type 2 diabetes mellitus (T2DM). We sought to determine whether sodium-glucose co-transporter-2 (SGLT-2) inhibitors affect indices of CAN in patients with T2DM. METHODS We searched for parallel group or cross-over randomized controlled trials (RCTs) enrolling adult subjects with T2DM, assigned to a SGLT-2 inhibitor versus placebo or active comparator and addressing their effect on CAN. PubMed, Cochrane Library and gray literature sources were searched. We set as primary efficacy outcome the change in the low-frequency-to-high-frequency (LF/HF) ratio. We set as secondary efficacy outcomes: first, the change in the standard deviation of all 5 min mean normal RR intervals and second, the change in the square root of the mean of the sum of the squares of differences between adjacent RR intervals (r-MSSD). Protocol has not been registered at a publicly available repository. RESULTS We pooled data from four RCTs in a total of 247 subjects with T2DM. SGLT-2 inhibitor treatment did not have a significant effect on LF/HF ratio (MD = - 0.11, 95% CI - 0.35 to 0.12, I2 = 0%, p = 0.36). SGLT-2 inhibitor treatment did not have a significant impact either on SDNN (MD = - 2.83, 95% CI - 7.41 to 1.75, I2 = 31%, p = 0.23), or on r-MSSD (MD = - 0.14, 95% CI - 3.52 to 3.25, I2 = 46%, p = 0.94). Overall risk of bias was graded as low across the selected RCTs. CONCLUSION SGLT-2 inhibitor treatment in patients with T2DM does not seem to provide any significant beneficial effect on CAN indices.
Collapse
Affiliation(s)
- Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Konstantinoupoleos 49, 54642, Thessaloníki, Greece.
| | - Alexandra Katsimardou
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Konstantinoupoleos 49, 54642, Thessaloníki, Greece
| | - Nikolaos Fragakis
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloníki, Greece
| | - Christodoulos Papadopoulos
- Third Department of Cardiology, Aristotle University of Thessaloniki, General Hospital "Hippokration", Thessaloníki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, General Hospital "Hippokration", Konstantinoupoleos 49, 54642, Thessaloníki, Greece
| |
Collapse
|
10
|
Sardu C, Massimo Massetti M, Rambaldi P, Gatta G, Cappabianca S, Sasso FC, Santamaria M, Volpicelli M, Ducceschi V, Signoriello G, Paolisso G, Marfella R. SGLT2-inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study. Metabolism 2022; 137:155243. [PMID: 35732222 DOI: 10.1016/j.metabol.2022.155243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) the vaso-vagal syncope (VVS) recurrence could be due to the alteration of autonomic system function, evaluated by heart rate variability (HRV), and by 123I-metaiodobenzylguanidine (123I-mIBG) myocardial scintigraphy indexes: Heart to Mediastinum ratio (H/Mlate), and Washout rate (WR). The SGLT2-I could modulate/reduce autonomic dysfunction in T2DM patients with VVS. This effect could reduce the VVS recurrence in T2DM patients. METHODS In a prospective multicenter study, after propensity score matching, we studied a population of 324 T2DM patients with VVS, divided into 161 SGLT2-I-users vs. 163 Non-SGLT2-I users. In these patients as SGLT2-I-users vs. Non-SGLT2-I users, we investigated the HRV and 123I-MIBG modifications and VVS recurrence at 12 months of follow-up. RESULTS At follow-up end, the SGLT2-I-users vs. Non-SGLT2-I users had best glucose homeostasis and lower values of inflammatory markers, and resting heart rate (p < 0.05). The SGLT2-I-users vs. Non-SGLT2-I users evidenced the lowest low frequency/high frequency ratio (LF/HFr), a significant difference for all the indexes of autonomic dysfunction via ECG Holter analysis, and higher values of H/Mlate (p < 0.05). Finally, comparing SGLT2-I-users vs. Non-SGLT2-I users, we found a higher rate of VVS recurrence events, specifically of the vasodepressor VVS recurrence at 1-year follow-up (p < 0.05). We did not find a significant difference of mixed and cardio-inhibitory VVS recurrence events at 1 year of follow-up in the study cohorts (p > 0.05). At the Cox regression analysis H/Mlate (0.710, [0.481-0.985]), and SGLT2-I therapy (0.550, [0.324-0.934]) predicted all causes of syncope recurrence at 1 year of follow-up. CONCLUSIONS Non-SGLT2-I users vs. SGLT2-I-users had alterations of the autonomic nervous system, with a higher rate of VVS recurrence at 1 year of follow-up. The indexes of cardiac denervation predicted the VVS recurrence, while the SGLT2-I reduced the risk of VVS recurrence. CLINICAL TRIAL REGISTRATION NUMBER NCT03717207.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - M Massimo Massetti
- Cardiovascular and Arrhythmias Department "Gemelli Molise", Campobasso, Italy; Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Rambaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Gianluca Gatta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Matteo Santamaria
- Cardiovascular and Arrhythmias Department "Gemelli Molise", Campobasso, Italy.
| | - Mario Volpicelli
- Cardiovascular Diseases and Electrophysiology Unit, "S. Maria della Pietà Hospital", Naples, Italy
| | - Valentino Ducceschi
- Cardiovascular Diseases and Electrophysiology Unit, "Vecchio Pellegrini Hospital", Naples, Italy
| | - Giuseppe Signoriello
- Department of Mental Health, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; "Mediterranea Cardiocentro", Naples, Italy.
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; "Mediterranea Cardiocentro", Naples, Italy.
| |
Collapse
|
11
|
Lim VG, He H, Lachlan T, Ng GA, Kyrou I, Randeva HS, Osman F. Impact of sodium-glucose co-transporter inhibitors on cardiac autonomic function and mortality: no time to die. Europace 2022; 24:1052-1057. [PMID: 35080624 DOI: 10.1093/europace/euab321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors have been shown to improve cardiovascular outcomes not only in patients with diabetes but also in those with heart failure, irrespective of diabetic status. However, the mechanisms underlying the cardioprotective effects of these newer anti-diabetic drugs remain to be fully elucidated. One exciting avenue that has been recently explored in both preclinical and clinical studies is the modulation of the cardiovascular autonomic nervous system. A reduction in sympathetic nervous system activity by SGLT2 inhibitors may potentially translate into a reduction in arrhythmic risk and sudden arrhythmic death, which may explain, at least partly, the cardioprotection shown in the cardiovascular outcome trials with different SGLT2 inhibitors. Although some of the data from the preclinical and clinical studies are promising, overall the findings can be contradictory. This highlights the need for more studies to address gaps in our knowledge of these novel drugs. The present review offers an in depth overview of the existing literature regarding the role of SGLT2 inhibitors in modulating cardiovascular autonomic function as one of the possible pathways of their cardioprotective effects.
Collapse
Affiliation(s)
- Ven Gee Lim
- Department of Cardiology, University Hospital Coventry, Clifford Bridge Road, Coventry CV2 2DX, UK.,Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK
| | - Hejie He
- Department of Cardiology, University Hospital Coventry, Clifford Bridge Road, Coventry CV2 2DX, UK.,Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK
| | - Thomas Lachlan
- Department of Cardiology, University Hospital Coventry, Clifford Bridge Road, Coventry CV2 2DX, UK.,Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK
| | - Ghulam Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital Leicester, Leicester LE3 9QP, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK.,Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK.,Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK.,Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Harpal S Randeva
- Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK.,Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK.,Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Faizel Osman
- Department of Cardiology, University Hospital Coventry, Clifford Bridge Road, Coventry CV2 2DX, UK.,Warwick Medical School, University of Warwick, Gibbet Hill Rd, Coventry CV4 7HL, UK
| |
Collapse
|
12
|
Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J Cardiovasc Transl Res 2022; 15:944-956. [PMID: 35290593 DOI: 10.1007/s12265-022-10220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have evident cardiovascular benefits in patients with type 2 diabetes with or at high risk for atherosclerotic cardiovascular disease, heart failure with reduced ejection fraction, heart failure with preserved ejection fraction (only empagliflozin and dapagliflozin have been investigated in this group so far), and chronic kidney disease. Prevention and reversal of adverse cardiac remodeling is one of the mechanisms by which SGLT2 inhibitors may exert cardiovascular benefits, especially heart failure-related outcomes. Cardiac remodeling encompasses molecular, cellular, and interstitial changes that result in favorable changes in the mass, geometry, size, and function of the heart. The pathophysiological mechanisms of adverse cardiac remodeling are related to increased apoptosis and necrosis, decreased autophagy, impairments of myocardial oxygen supply and demand, and altered energy metabolism. Herein, the accumulating evidence from animal and human studies is reviewed investigating the effects of SGLT2 inhibitors on these mechanisms of cardiac remodeling.
Collapse
|
13
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
14
|
Kanie T, Mizuno A, Takaoka Y, Suzuki T, Yoneoka D, Nishikawa Y, Tam WWS, Morze J, Rynkiewicz A, Xin Y, Wu O, Providencia R, Kwong JS. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 10:CD013650. [PMID: 34693515 PMCID: PMC8812344 DOI: 10.1002/14651858.cd013650.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death globally. Recently, dipeptidyl peptidase-4 inhibitors (DPP4i), glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose co-transporter-2 inhibitors (SGLT2i) were approved for treating people with type 2 diabetes mellitus. Although metformin remains the first-line pharmacotherapy for people with type 2 diabetes mellitus, a body of evidence has recently emerged indicating that DPP4i, GLP-1RA and SGLT2i may exert positive effects on patients with known CVD. OBJECTIVES To systematically review the available evidence on the benefits and harms of DPP4i, GLP-1RA, and SGLT2i in people with established CVD, using network meta-analysis. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and the Conference Proceedings Citation Index on 16 July 2020. We also searched clinical trials registers on 22 August 2020. We did not restrict by language or publication status. SELECTION CRITERIA We searched for randomised controlled trials (RCTs) investigating DPP4i, GLP-1RA, or SGLT2i that included participants with established CVD. Outcome measures of interest were CVD mortality, fatal and non-fatal myocardial infarction, fatal and non-fatal stroke, all-cause mortality, hospitalisation for heart failure (HF), and safety outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently screened the results of searches to identify eligible studies and extracted study data. We used the GRADE approach to assess the certainty of the evidence. We conducted standard pairwise meta-analyses and network meta-analyses by pooling studies that we assessed to be of substantial homogeneity; subgroup and sensitivity analyses were also pursued to explore how study characteristics and potential effect modifiers could affect the robustness of our review findings. We analysed study data using the odds ratios (ORs) and log odds ratios (LORs) with their respective 95% confidence intervals (CIs) and credible intervals (Crls), where appropriate. We also performed narrative synthesis for included studies that were of substantial heterogeneity and that did not report quantitative data in a usable format, in order to discuss their individual findings and relevance to our review scope. MAIN RESULTS We included 31 studies (287 records), of which we pooled data from 20 studies (129,465 participants) for our meta-analysis. The majority of the included studies were at low risk of bias, using Cochrane's tool for assessing risk of bias. Among the 20 pooled studies, six investigated DPP4i, seven studied GLP-1RA, and the remaining seven trials evaluated SGLT2i. All outcome data described below were reported at the longest follow-up duration. 1. DPP4i versus placebo Our review suggests that DPP4i do not reduce any risk of efficacy outcomes: CVD mortality (OR 1.00, 95% CI 0.91 to 1.09; high-certainty evidence), myocardial infarction (OR 0.97, 95% CI 0.88 to 1.08; high-certainty evidence), stroke (OR 1.00, 95% CI 0.87 to 1.14; high-certainty evidence), and all-cause mortality (OR 1.03, 95% CI 0.96 to 1.11; high-certainty evidence). DPP4i probably do not reduce hospitalisation for HF (OR 0.99, 95% CI 0.80 to 1.23; moderate-certainty evidence). DPP4i may not increase the likelihood of worsening renal function (OR 1.08, 95% CI 0.88 to 1.33; low-certainty evidence) and probably do not increase the risk of bone fracture (OR 1.00, 95% CI 0.83 to 1.19; moderate-certainty evidence) or hypoglycaemia (OR 1.11, 95% CI 0.95 to 1.29; moderate-certainty evidence). They are likely to increase the risk of pancreatitis (OR 1.63, 95% CI 1.12 to 2.37; moderate-certainty evidence). 2. GLP-1RA versus placebo Our findings indicate that GLP-1RA reduce the risk of CV mortality (OR 0.87, 95% CI 0.79 to 0.95; high-certainty evidence), all-cause mortality (OR 0.88, 95% CI 0.82 to 0.95; high-certainty evidence), and stroke (OR 0.87, 95% CI 0.77 to 0.98; high-certainty evidence). GLP-1RA probably do not reduce the risk of myocardial infarction (OR 0.89, 95% CI 0.78 to 1.01; moderate-certainty evidence), and hospitalisation for HF (OR 0.95, 95% CI 0.85 to 1.06; high-certainty evidence). GLP-1RA may reduce the risk of worsening renal function (OR 0.61, 95% CI 0.44 to 0.84; low-certainty evidence), but may have no impact on pancreatitis (OR 0.96, 95% CI 0.68 to 1.35; low-certainty evidence). We are uncertain about the effect of GLP-1RA on hypoglycaemia and bone fractures. 3. SGLT2i versus placebo This review shows that SGLT2i probably reduce the risk of CV mortality (OR 0.82, 95% CI 0.70 to 0.95; moderate-certainty evidence), all-cause mortality (OR 0.84, 95% CI 0.74 to 0.96; moderate-certainty evidence), and reduce the risk of HF hospitalisation (OR 0.65, 95% CI 0.59 to 0.71; high-certainty evidence); they do not reduce the risk of myocardial infarction (OR 0.97, 95% CI 0.84 to 1.12; high-certainty evidence) and probably do not reduce the risk of stroke (OR 1.12, 95% CI 0.92 to 1.36; moderate-certainty evidence). In terms of treatment safety, SGLT2i probably reduce the incidence of worsening renal function (OR 0.59, 95% CI 0.43 to 0.82; moderate-certainty evidence), and probably have no effect on hypoglycaemia (OR 0.90, 95% CI 0.75 to 1.07; moderate-certainty evidence) or bone fracture (OR 1.02, 95% CI 0.88 to 1.18; high-certainty evidence), and may have no impact on pancreatitis (OR 0.85, 95% CI 0.39 to 1.86; low-certainty evidence). 4. Network meta-analysis Because we failed to identify direct comparisons between each class of the agents, findings from our network meta-analysis provided limited novel insights. Almost all findings from our network meta-analysis agree with those from the standard meta-analysis. GLP-1RA may not reduce the risk of stroke compared with placebo (OR 0.87, 95% CrI 0.75 to 1.0; moderate-certainty evidence), which showed similar odds estimates and wider 95% Crl compared with standard pairwise meta-analysis. Indirect estimates also supported comparison across all three classes. SGLT2i was ranked the best for CVD and all-cause mortality. AUTHORS' CONCLUSIONS Findings from both standard and network meta-analyses of moderate- to high-certainty evidence suggest that GLP-1RA and SGLT2i are likely to reduce the risk of CVD mortality and all-cause mortality in people with established CVD; high-certainty evidence demonstrates that treatment with SGLT2i reduce the risk of hospitalisation for HF, while moderate-certainty evidence likely supports the use of GLP-1RA to reduce fatal and non-fatal stroke. Future studies conducted in the non-diabetic CVD population will reveal the mechanisms behind how these agents improve clinical outcomes irrespective of their glucose-lowering effects.
Collapse
Affiliation(s)
- Takayoshi Kanie
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Mizuno
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
- Penn Medicine Nudge Unit, University of Pennsylvania Philadelphia, Philadelphia, PA, USA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshimitsu Takaoka
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Takahiro Suzuki
- Department of Cardiology, St. Luke's International Hospital, Tokyo, Japan
| | - Daisuke Yoneoka
- Division of Biostatistics and Bioinformatics, Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yuri Nishikawa
- Department of Gerontological Nursing and Healthcare Systems Management, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Gerontological Nursing, Kyorin University, Tokyo, Japan
| | - Wilson Wai San Tam
- Alice Lee Center for Nursing Studies, NUS Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Jakub Morze
- Department of Human Nutrition, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrzej Rynkiewicz
- Department of Cardiology and Cardiosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Yiqiao Xin
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Olivia Wu
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rui Providencia
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Joey Sw Kwong
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| |
Collapse
|
15
|
Onyali CB, Anim-Koranteng C, Shah HE, Bhawnani N, Ethirajulu A, Alkasabera A, Mostafa JA. Role of Selective Sodium-Glucose Co-Transporter-2 Inhibitors in Managing Cardio-Renal Complications in Type 2 Diabetes Mellitus: Beyond Glycemic Control. Cureus 2021; 13:e17452. [PMID: 34603858 PMCID: PMC8475743 DOI: 10.7759/cureus.17452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular complications are the leading causes of death in type 2 diabetes mellitus. Apart from the standard therapy, which includes angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), lipid-lowering medication, and anti-platelet therapy, the new group of drugs termed the 'sodium-glucose co-transporter-2 (SGLT2) inhibitors' have shown promising results in managing complications arising from the cardiovascular and renal systems in diabetics. This article attempts to highlight the role and mechanism of action of this class of drugs. We reviewed 127 articles and analyses of randomized controlled trials using several drugs in the SGLT2 inhibitor family (sotagliflozin, canagliflozin, dapagliflozin, tofogliflozin) over the past five years, out of which 58 met the criteria and aim of the study. These articles were retrieved from PubMed, Google Scholar, and Medline data sources and assessed for quality using the assessment of multiple systematic reviews (AMSTAR) checklist and Cochrane risk-of-bias tool. Results from the review showed significant benefits in reducing progressive renal decline, blood pressure control, heart failure hospitalization, death from renal or cardiovascular complications, myocardial infarction, and stroke. This benefit is also seen in non-diabetic patients, hence postulating that these effects may not be solely due to glycemic control. There are several mechanisms with which it achieves this benefit with the most significant being its role on intraglomerular pressure. Other pathways include blood pressure control, natriuresis, ventricular remodeling, erythropoiesis, lipid metabolism, plasma volume, and electrolyte imbalance. It is clear that the role of SGLT2 inhibitors isn’t limited to glycemic control and they can achieve a wide array of functions by affecting different systems. More studies need to be done to completely understand this medication to improve the quality of life in diabetic and non-diabetic patients living with CKD and cardiovascular complications. The pharmacokinetics of this drug could also help set the basis for newer medications.
Collapse
Affiliation(s)
- Chike B Onyali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Hira E Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Bhawnani
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aarthi Ethirajulu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Almothana Alkasabera
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
16
|
Rasalam R, Atherton JJ, Deed G, Molloy‐Bland M, Cohen N, Sindone A. Sodium-glucose cotransporter 2 inhibitor effects on heart failure hospitalization and cardiac function: systematic review. ESC Heart Fail 2021; 8:4093-4118. [PMID: 34219407 PMCID: PMC8497341 DOI: 10.1002/ehf2.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS To systematically review randomized controlled trials assessing effects of sodium-glucose cotransporter 2 inhibitors (SGLT2is) on hospitalization for heart failure (HHF) and cardiac structure/function and explore randomized controlled trial (RCT)-derived evidence for SGLT2i efficacy mechanisms in heart failure (HF). METHODS AND RESULTS Systematic searches of Medline and Embase were performed. In seven trials [3730-17 160 patients; low risk of bias (RoB)], SGLT2is significantly reduced the relative risk of HHF by 27-39% vs. placebo, including in two studies in patients with HF with reduced ejection fraction with or without type-2 diabetes mellitus (T2DM). Improvements in conventional cardiovascular risk factors, including glycaemic levels, cannot account for these effects. Five trials (56-105 patients; low RoB) assessed the effects of 6-12 months of SGLT2i treatment on left ventricular structure/function; four reported significant improvements vs. placebo, and one did not. Five trials (low RoB) assessed SGLT2i treatment effects on serum N-terminal pro B-type natriuretic peptide levels; significant reductions vs. placebo were reported after 8-12 months (two studies; 3730-4744 patients) but not ≤12 weeks (three studies; 80-263 patients). Limited available RCT-derived evidence suggests various possible cardioprotective SGLT2i mechanisms, including improved haemodynamics (natriuresis and reduced interstitial fluid without blood volume contraction/neurohormonal activation) and vascular function, enhanced erythropoiesis, reduced tissue sodium and epicardial fat/inflammation, decreased sympathetic tone, and beneficial changes in cellular energetics. CONCLUSIONS Sodium-glucose cotransporter 2 inhibitors reduce HHF regardless of T2DM status, and reversal of adverse left ventricular remodelling likely contributes to this efficacy. Hypothesis-driven mechanistic trials remain sparse, although numerous trials are planned or ongoing.
Collapse
Affiliation(s)
- Roy Rasalam
- College of Medicine & DentistryJames Cook UniversityTownsvilleQLDAustralia
| | - John J. Atherton
- Royal Brisbane and Women's Hospital, Faculty of MedicineUniversity of QueenslandHerstonQLDAustralia
| | - Gary Deed
- Mediwell Medical ClinicCoorparooQLDAustralia
| | | | - Neale Cohen
- Baker Heart and Diabetes InstituteMelbourneVICAustralia
| | | |
Collapse
|
17
|
Ang L, Kidwell KM, Dillon B, Reiss J, Fang F, Leone V, Mizokami-Stout K, Pop-Busui R. Dapagliflozin and measures of cardiovascular autonomic function in patients with type 2 diabetes (T2D). J Diabetes Complications 2021; 35:107949. [PMID: 34024686 DOI: 10.1016/j.jdiacomp.2021.107949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
AIMS Sodium-glucose cotransporter-2 (SGLT-2) inhibitors reduce blood pressure without compensatory heart rate elevation, possibly by modulating sympathetic/parasympathetic activity. This may contribute to their cardiovascular benefits in type 2 diabetes (T2D). We evaluated the effects of dapagliflozin (DAPA) on measures of cardiovascular autonomic neuropathy (CAN), cardiac function, and glucose variability (GV) in T2D. METHODS Pilot, randomized, two-period crossover trial comparing 12-week DAPA versus 12-week glimepiride treatment on CAN measures (cardiovascular autonomic reflex tests and heart rate variability), B-type natriuretic peptide (BNP), and GV (Abbott's Libre Pro devices) using signed rank tests and mixed models from baseline to 12 weeks within and between each period. RESULTS Forty-five T2D participants on metformin monotherapy (mean age 57 ± 8 years, duration 7 ± 6 years, HbA1c 7.8 ± 1.3%) were enrolled with 41 completing the trial. There were no differences in CAN indices or BNP with each drug compared to baseline and each other. Participants on DAPA demonstrated greater weight loss, reduced time in hypoglycemia, and improved GV compared to glimepiride. CONCLUSIONS Short term treatment with DAPA did not affect CAN measures or BNP in uncomplicated and relatively healthy T2D participants. Longer prospective studies in patients with advanced disease are needed to better understand relationships between SGLT-2 inhibitors and CAN. CLINICAL TRIAL REGISTRATION NCT02973477.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| | - Kelley M Kidwell
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Brendan Dillon
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Jacob Reiss
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Fang Fang
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Virginia Leone
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
18
|
Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations. Drugs 2021; 81:1381-1395. [PMID: 34297330 DOI: 10.1007/s40265-021-01565-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/11/2022]
Abstract
The global burden of atrial fibrillation (AF) is constantly increasing, necessitating novel and effective therapeutic options. Sodium glucose co-transporter 2 (SGLT2) inhibitors have been introduced in clinical practice as glucose-lowering medications. However, they have recently gained prominence for their potential to exert substantial cardiorenal protection and are being evaluated in large clinical trials including patients with type 2 diabetes and normoglycemic adults. In this review we present up-to-date available evidence in a pathophysiology-directed manner from cell to bedside. Preclinical and clinical data regarding a conceivable antiarrhythmic effect of SGLT2 inhibitors are beginning to accumulate. Herein we comprehensively present data that explore the potential pathophysiological link between SGLT2 inhibitors and AF. With regard to clinical data, no randomized controlled trials evaluating SGLT2 inhibitors effects on AF as a pre-specified endpoint are available. However, data from randomized controlled trial post-hoc analysis as well as observational studies point to a possible beneficial effect of SGLT2 inhibitors on AF. Meta-analyses addressing this question report inconsistent results and the real magnitude of AF prevention by SGLT2 inhibition remains unclear. Still, while (i) pathophysiologic mechanisms involved in AF might be favorably affected by SGLT2 inhibitors and (ii) emerging, yet inconsistent, clinical data imply that SGLT2 inhibitor-mediated cardiorenal protection could also exert antiarrhythmic effects, the argument of whether these novel drugs will reduce AF burden is unsettled and mandates appropriately designed and adequately sized randomized controlled studies.
Collapse
|
19
|
Song Q, Guo Y, Pei F, Wang X. The relationship between the carotid atherosclerosis ultrasound parameters and the cardiac and endothelial functions of coronary heart disease patients. Am J Transl Res 2021; 13:5498-5504. [PMID: 34150149 PMCID: PMC8205754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE This study aimed to discover the relationship between the carotid atherosclerosis ultrasound parameters and the cardiac and endothelial functions of coronary heart disease patients. METHODS 150 patients with coronary artery disease were divided into a single-branch group (one coronary artery with stenosis > 50%), a double-branch group (two coronary arteries with stenosis > 50%), and a multi-branch group (multiple coronary arteries with stenosis > 50%) based on the severity of each patient's coronary stenosis. Meanwhile, 50 healthy volunteers who were admitted to the hospital for routine health checks were recruited as the control group. This study tested the ultrasound parameters of carotid artery atherosclerosis among all the subjects in each group [common carotid artery sclerosis (β), carotid artery compliance (AC), elastic coefficient (Ep), pulse wave conduction velocity (PWVβ)], including the left ventricular end diastolic inner diameter (LVEDD), left ventricular ejection fraction (LVEF) and endothelial function parameters [endothelin-1 (ET-1), von Willebrand factor (vWF), and nitric oxide (NO)]. RESULTS The study found that the β, AC, Ep, PWVβ, LVEDD, LVESD, ET-1, and vWF levels of patients with coronary artery disease were all higher than the corresponding levels in the control group (P < 0.05). The values increased as the number of coronary artery branches with stenosis increased (P < 0.05). The LVEF and NO of the patients with coronary artery disease were lower than they were in the control group (P < 0.05). The LVEF and NO decreased as the coronary artery branches with stenosis increased (P < 0.05). The correlation analysis indicated that the ultrasound parameter of carotid atherosclerosis has a significant positive relation with the LVEDD, LVESD, ET-1, and vWF levels (P < 0.05) and a negative relation with the LVEF and NO levels (P < 0.05). CONCLUSION The ultrasound parameter of carotid atherosclerosis, cardiac function, and endothelial function can be used for the early diagnosis of coronary heart disease.
Collapse
Affiliation(s)
- Qingfei Song
- Department of Ultrasound Medicine, Heping Hospital Affiliated to Changzhi Medical College 110 South Yanan Road, Changzhi 046000, Shanxi Province, China
| | - Yanling Guo
- Department of Ultrasound Medicine, Heping Hospital Affiliated to Changzhi Medical College 110 South Yanan Road, Changzhi 046000, Shanxi Province, China
| | - Fei Pei
- Department of Ultrasound Medicine, Heping Hospital Affiliated to Changzhi Medical College 110 South Yanan Road, Changzhi 046000, Shanxi Province, China
| | - Xiaoyan Wang
- Department of Ultrasound Medicine, Heping Hospital Affiliated to Changzhi Medical College 110 South Yanan Road, Changzhi 046000, Shanxi Province, China
| |
Collapse
|
20
|
Abstract
SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada;
- Departments of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|