1
|
Liu F, Cai Z, Kang W, Chen W, Lu Y, Chen M, Zhao R. A New Method for Constructing High-Resolution Phylogenomic Topologies Using Core Gene-Associated MNP Markers: A Case Study From Agaricus bisporus. Microb Biotechnol 2025; 18:e70070. [PMID: 39976373 PMCID: PMC11840843 DOI: 10.1111/1751-7915.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025] Open
Abstract
Accurate strain identification is essential for economically significant fungi, as it aids in understanding their diverse agronomic traits, pathogenicity, and other important characteristics. However, traditional methods often face challenges related to limited accuracy, high workloads, and reproducibility issues. Recently, multiple nucleotide polymorphism (MNP) markers have been employed in mushroom strain identification, demonstrating significantly improved accuracy and reproducibility. Nevertheless, the identification of strains across different species still heavily depends on specific and often overly complex MNP markers. In this study, we address these challenges by developing a novel method for constructing high-resolution phylogenomic topologies using core gene-associated multiple nucleotide polymorphism (cgMNP) markers, focusing on Agaricus bisporus (button mushroom). Utilising resequencing data from 213 cultivated and wild strains of A. bisporus, we identified 84 cgMNP markers within 83 core genes from 1011 MNP markers. Phylogenetic analysis based on cgMNP sequences and the genetic distance between strain pairs allowed for precise identification of all strains. Moreover, the successful transferability of these cgMNP markers to an additional 385 A. bisporus strains and other fungal species, including Flammulina filiformis (enoki mushroom) and Saccharomyces cerevisiae (yeast), highlights their cross-species applicability. The high resolution and strong congruence of cgMNP markers with whole-genome data provide a robust and reliable method for strain-level discrimination in fungi. The success of this approach in A. bisporus sets a promising precedent for its application to a broader range of fungal taxa.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zhi‐Xin Cai
- Institute of Edible MushroomFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Wen‐Yi Kang
- National R & D Center for Edible Fungus Processing TechnologyHenan UniversityKaifengChina
| | - Wen‐Zhi Chen
- Institute of Edible MushroomFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Yuan‐Ping Lu
- Institute of Edible MushroomFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Mei‐Yuan Chen
- Institute of Edible MushroomFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Rui‐Lin Zhao
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Wang Y, Wu X, Chen Y, Xu C, Wang Y, Wang Q. Phylogenomic analyses revealed widely occurring hybridization events across Elsholtzieae (Lamiaceae). Mol Phylogenet Evol 2024; 198:108112. [PMID: 38806075 DOI: 10.1016/j.ympev.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexue Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Caetano DS, Quental TB. How Important Is Budding Speciation for Comparative Studies? Syst Biol 2023; 72:1443-1453. [PMID: 37586404 DOI: 10.1093/sysbio/syad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
The acknowledgment of evolutionary dependence among species has fundamentally changed how we ask biological questions. Phylogenetic models became the standard approach for studies with 3 or more lineages, in particular those using extant species. Most phylogenetic comparative methods (PCMs) translate relatedness into covariance, meaning that evolutionary changes before lineages split should be interpreted together whereas after the split lineages are expected to change independently. This clever realization has shaped decades of research. Here, we discuss one element of the comparative method often ignored or assumed as unimportant: if nodes of a phylogeny represent the dissolution of the ancestral lineage into two new ones or if the ancestral lineage can survive speciation events (i.e., budding). Budding speciation is often reported in paleontological studies, due to the nature of the evidence for budding in the fossil record, but it is surprisingly absent in comparative methods. Here, we show that many PCMs assume that divergence happens as a symmetric split, even if these methods do not explicitly mention this assumption. We discuss the properties of trait evolution models for continuous and discrete traits and their adequacy under a scenario of budding speciation. We discuss the effects of budding speciation under a series of plausible evolutionary scenarios and show when and how these can influence our estimates. We also propose that long-lived lineages that have survived through a series of budding speciation events and given birth to multiple new lineages can produce evolutionary patterns that challenge our intuition about the most parsimonious history of trait changes in a clade. We hope our discussion can help bridge comparative approaches in paleontology and neontology as well as foster awareness about the assumptions we make when we use phylogenetic trees.
Collapse
Affiliation(s)
- Daniel S Caetano
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| | - Tiago B Quental
- Department of Ecology, University of São Paulo, Rua do Matão, 321 - Trav. 14, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
5
|
Farrell AA, Nesbø CL, Zhaxybayeva O. Early Divergence and Gene Exchange Highways in the Evolutionary History of Mesoaciditogales. Genome Biol Evol 2023; 15:evad156. [PMID: 37616556 PMCID: PMC10476701 DOI: 10.1093/gbe/evad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The placement of a nonhyperthermophilic order Mesoaciditogales as the earliest branching clade within the Thermotogota phylum challenges the prevailing hypothesis that the last common ancestor of Thermotogota was a hyperthermophile. Yet, given the long branch leading to the only two Mesoaciditogales described to date, the phylogenetic position of the order may be due to the long branch attraction artifact. By testing various models and applying data recoding in phylogenetic reconstructions, we observed that early branching of Mesoaciditogales within Thermotogota is strongly supported by the conserved marker genes assumed to be vertically inherited. However, based on the taxonomic content of 1,181 gene families and a phylogenetic analysis of 721 gene family trees, we also found that a substantial number of Mesoaciditogales genes are more closely related to species from the order Petrotogales. These genes contribute to coenzyme transport and metabolism, fatty acid biosynthesis, genes known to respond to heat and cold stressors, and include many genes of unknown functions. The Petrotogales comprise moderately thermophilic and mesophilic species with similar temperature tolerances to that of Mesoaciditogales. Our findings hint at extensive horizontal gene transfer (HGT) between, or parallel independent gene gains by, the two ecologically similar lineages and suggest that the exchanged genes may be important for adaptation to comparable temperature niches.
Collapse
Affiliation(s)
- Anne A Farrell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Fleming JF, Valero‐Gracia A, Struck TH. Identifying and addressing methodological incongruence in phylogenomics: A review. Evol Appl 2023; 16:1087-1104. [PMID: 37360032 PMCID: PMC10286231 DOI: 10.1111/eva.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever. Incongruence in phylogenetic reconstructions based on different datasets may be due to two major sources: biological and methodological. Biological sources comprise processes like horizontal gene transfer, hybridization and incomplete lineage sorting, while methodological ones contain falsely assigned data or violations of the assumptions of the underlying model. While the former provides interesting insights into the evolutionary history of the investigated groups, the latter should be avoided or minimized as best as possible. However, errors introduced by methodology must first be excluded or minimized to be able to conclude that biological sources are the cause. Fortunately, a variety of useful tools exist to help detect such misassignments and model violations and to apply ameliorating measurements. Still, the number of methods and their theoretical underpinning can be overwhelming and opaque. Here, we present a practical and comprehensive review of recent developments in techniques to detect artefacts arising from model violations and poorly assigned data. The advantages and disadvantages of the different methods to detect such misleading signals in phylogenetic reconstructions are also discussed. As there is no one-size-fits-all solution, this review can serve as a guide in choosing the most appropriate detection methods depending on both the actual dataset and the computational power available to the researcher. Ultimately, this informed selection will have a positive impact on the broader field, allowing us to better understand the evolutionary history of the group of interest.
Collapse
|
7
|
Santos RGD, Hurtado R, Rodrigues DLN, Lima A, Dos Anjos WF, Rifici C, Attili AR, Tiwari S, Jaiswal AK, Spier SJ, Mazzullo G, Morais-Rodrigues F, Gomide ACP, de Jesus LCL, Aburjaile FF, Brenig B, Cuteri V, Castro TLDP, Seyffert N, Santos A, Góes-Neto A, de Jesus Sousa T, Azevedo V. Comparative genomic analysis of the Dietzia genus: an insight into genomic diversity, and adaptation. Res Microbiol 2023; 174:103998. [PMID: 36375718 DOI: 10.1016/j.resmic.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Dietzia strains are widely distributed in the environment, presenting an opportunistic role, and some species have undetermined taxonomic characteristics. Here, we propose the existence of errors in the classification of species in this genus using comparative genomics. We performed ANI, dDDH, pangenome and genomic plasticity analyses better to elucidate the phylogenomic relationships between Dietzia strains. For this, we used 55 genomes of Dietzia downloaded from public databases that were combined with a newly sequenced. Sequence analysis of a phylogenetic tree based on genome similarity comparisons and dDDH, ANI analyses supported grouping different Dietzia species into four distinct groups. The pangenome analysis corroborated the classification of these groups, supporting the idea that some species of Dietzia could be reassigned in a possible classification into three distinct species, each containing less variability than that found within the global pangenome of all strains. Additionally, analysis of genomic plasticity based on groups containing Dietzia strains found differences in the presence and absence of symbiotic Islands and pathogenic islands related to their isolation site. We propose that the comparison of pangenome subsets together with phylogenomic approaches can be used as an alternative for the classification and differentiation of new species of the genus Dietzia.
Collapse
Affiliation(s)
- Roselane Gonçalves Dos Santos
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Raquel Hurtado
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Diego Lucas Neres Rodrigues
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alessandra Lima
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario dell'Annunziata, 98168 Messina (ME), Italy.
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Sandeep Tiwari
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil; Postgraduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Arun Kumar Jaiswal
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sharon J Spier
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA, USA.
| | - Giuseppe Mazzullo
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario dell'Annunziata, 98168 Messina (ME), Italy.
| | - Francielly Morais-Rodrigues
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Cybelle Pinto Gomide
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia Figueira Aburjaile
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Thiago Luiz de Paula Castro
- Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil; Postgraduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Núbia Seyffert
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Anderson Santos
- Department of Computer Science, Federal University of Uberlandia, Uberlandia, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais Brazil.
| | - Thiago de Jesus Sousa
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Vasco Azevedo
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
9
|
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021; 24:357-369. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Floridia-Yapur N, Rusman F, Diosque P, Tomasini N. Genome data vs MLST for exploring intraspecific evolutionary history in bacteria: Much is not always better. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104990. [PMID: 34224899 DOI: 10.1016/j.meegid.2021.104990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Genome-based phylogeny has been proposed to be more accurate than phylogeny based in a few genes as MLST-based phylogeny. However, much is not always better. Here we analyzed 368 complete genomes corresponding to 9 bacterial species in order to address intraspecific phylogeny. The studied species were: Burkholderia pseudomallei, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus and Streptococcus pyogenes. The intra-specific phylogenies were inferred using the complete genome sequences of different strains of these species and their MLST schemes. A supermatrix approach was used to infer maximum likelihood phylogenies in both cases. The phylogenetic incongruence between the supermatrix-based genome or MLST tree and individual trees (constructed from genome fragments or MLST genes, respectively) was analyzed. In supermatrix-based trees for genomes, most branches showed a high branch support; however, a high number of branches also showed high percentage of topologically incongruent individual trees. Interestingly, genome and MLST trees showed similar levels of incongruence in the phylogeny for each bacteria specie. Both genome and MLST approaches showed that C. trachomatis and S. aureus have a tree-like evolutionary history (low levels of internal incongruence). Instead, B. pseudomallei and S. pyogenes show high levels of incongruence (network-like evolutionary story) probably caused by HGT (horizontal gene transfer). Concluding, our analysis showed that: high branch supports obtained in genome phylogenies could be an artifact probably caused by data size; MLST is valid to address intraspecific phylogenetic structure; and, each species has its own evolutionary history, which could be affected by HGT to different extents.
Collapse
Affiliation(s)
- Noelia Floridia-Yapur
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Fanny Rusman
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Patricio Diosque
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Nicolás Tomasini
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina.
| |
Collapse
|
11
|
Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2021; 6. [PMID: 32969786 PMCID: PMC7660255 DOI: 10.1099/mgen.0.000435] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial plasmids play a large role in allowing bacteria to adapt to changing environments and can pose a significant risk to human health if they confer virulence and antimicrobial resistance (AMR). Plasmids differ significantly in the taxonomic breadth of host bacteria in which they can successfully replicate, this is commonly referred to as 'host range' and is usually described in qualitative terms of 'narrow' or 'broad'. Understanding the host range potential of plasmids is of great interest due to their ability to disseminate traits such as AMR through bacterial populations and into human pathogens. We developed the MOB-suite to facilitate characterization of plasmids and introduced a whole-sequence-based classification system based on clustering complete plasmid sequences using Mash distances (https://github.com/phac-nml/mob-suite). We updated the MOB-suite database from 12 091 to 23 671 complete sequences, representing 17 779 unique plasmids. With advances in new algorithms for rapidly calculating average nucleotide identity (ANI), we compared clustering characteristics using two different distance measures - Mash and ANI - and three clustering algorithms on the unique set of plasmids. The plasmid nomenclature is designed to group highly similar plasmids together that are unlikely to have multiple representatives within a single cell. Based on our results, we determined that clusters generated using Mash and complete-linkage clustering at a Mash distance of 0.06 resulted in highly homogeneous clusters while maintaining cluster size. The taxonomic distribution of plasmid biomarker sequences for replication and relaxase typing, in combination with MOB-suite whole-sequence-based clusters have been examined in detail for all high-quality publicly available plasmid sequences. We have incorporated prediction of plasmid replication host range into the MOB-suite based on observed distributions of these sequence features in combination with known plasmid hosts from the literature. Host range is reported as the highest taxonomic rank that covers all of the plasmids which share replicon or relaxase biomarkers or belong to the same MOB-suite cluster code. Reporting host range based on these criteria allows for comparisons of host range between studies and provides information for plasmid surveillance.
Collapse
Affiliation(s)
- James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Justin Schonfeld
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
12
|
Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms 2020; 9:microorganisms9010008. [PMID: 33375064 PMCID: PMC7822027 DOI: 10.3390/microorganisms9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian gut is densely inhabited by microorganisms that have coevolved with their host. Amongst these latter microorganisms, bifidobacteria represent a key model to study host–microbe interaction within the mammalian gut. Remarkably, bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract. They constitute one of the dominant bacterial members of the intestinal microbiota and are among the first colonizers of the mammalian gut. Notably, the presence of bifidobacteria in the gut has been associated with several health-promoting activities. In this review, we aim to provide an overview of current knowledge on the genetic diversity and ecology of bifidobacteria. Furthermore, we will discuss how this important group of gut bacteria is able to colonize and survive in the mammalian gut, so as to facilitate host interactions.
Collapse
|
13
|
Fang H, Xu JB, Nie Y, Wu XL. Pan-genomic analysis reveals that the evolution of Dietzia species depends on their living habitats. Environ Microbiol 2020; 23:861-877. [PMID: 32715552 DOI: 10.1111/1462-2920.15176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The bacterial genus Dietzia is widely distributed in various environments. The genomes of 26 diverse strains of Dietzia, including almost all the type strains, were analysed in this study. This analysis revealed a lipid metabolism gene richness, which could explain the ability of Dietzia to live in oil related environments. The pan-genome consists of 83,976 genes assigned into 10,327 gene families, 792 of which are shared by all the genomes of Dietzia. Mathematical extrapolation of the data suggests that the Dietzia pan-genome is open. Both gene duplication and gene loss contributed to the open pan-genome, while horizontal gene transfer was limited. Dietzia strains primarily gained their diverse metabolic capacity through more ancient gene duplications. Phylogenetic analysis of Dietzia isolated from aquatic and terrestrial environments showed two distinct clades from the same ancestor. The genome sizes of Dietzia strains from aquatic environments were significantly larger than those from terrestrial environments, which was mainly due to the occurrence of more gene loss events during the evolutionary progress of the strains from terrestrial environments. The evolutionary history of Dietzia was tightly coupled to environmental conditions, and iron concentrations should be one of the key factors shaping the genomes of the Dietzia lineages.
Collapse
Affiliation(s)
- Hui Fang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jin-Bo Xu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol Phylogenet Evol 2020; 149:106837. [PMID: 32304827 DOI: 10.1016/j.ympev.2020.106837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
Abstract
DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.
Collapse
|
15
|
Saroj DB, Gupta AK. Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application. Int J Food Microbiol 2020; 318:108523. [DOI: 10.1016/j.ijfoodmicro.2020.108523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/30/2019] [Accepted: 01/12/2020] [Indexed: 01/12/2023]
|
16
|
Srivastava A, Mohan S, Mauchline TH, Davies KG. Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans. FEMS Microbiol Ecol 2019; 95:5149496. [PMID: 30380051 PMCID: PMC6238073 DOI: 10.1093/femsec/fiy217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.
Collapse
Affiliation(s)
- Arohi Srivastava
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Tim H Mauchline
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115, Ås-1431, Norway
- Corresponding author: Keith G Davies, Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK. E-mail:
| |
Collapse
|
17
|
Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl Environ Microbiol 2019; 85:AEM.00988-19. [PMID: 31126947 DOI: 10.1128/aem.00988-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Survival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCE The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.
Collapse
|
18
|
Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber APM. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 2019; 8:e45017. [PMID: 31149898 PMCID: PMC6629376 DOI: 10.7554/elife.45017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Dana C Price
- Department of Plant BiologyRutgers UniversityNew BrunswickUnited States
| | - Mark Seger
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | - Dagmar Lyska
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Peter Lammers
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | | | - Andreas PM Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
19
|
Jeong H, Arif B, Caetano-Anollés G, Kim KM, Nasir A. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci Rep 2019; 9:5953. [PMID: 30976019 PMCID: PMC6459891 DOI: 10.1038/s41598-019-42227-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Horizontal gene transfer (HGT) is widespread in the evolution of prokaryotes, especially those associated with the human body. Here, we implemented large-scale gene-species phylogenetic tree reconstructions and reconciliations to identify putative HGT-derived genes in the reference genomes of microbiota isolated from six major human body sites by the NIH Human Microbiome Project. Comparisons with a control group representing microbial genomes from diverse natural environments indicated that HGT activity increased significantly in the genomes of human microbiota, which is confirmatory of previous findings. Roughly, more than half of total genes in the genomes of human-associated microbiota were transferred (donated or received) by HGT. Up to 60% of the detected HGTs occurred either prior to the colonization of the human body or involved bacteria residing in different body sites. The latter could suggest 'genetic crosstalk' and movement of bacterial genes within the human body via hitherto poorly understood mechanisms. We also observed that HGT activity increased significantly among closely-related microorganisms and especially when they were united by physical proximity, suggesting that the 'phylogenetic effect' can significantly boost HGT activity. Finally, we identified several core and widespread genes least influenced by HGT that could become useful markers for building robust 'trees of life' and address several outstanding technical challenges to improve the phylogeny-based genome-wide HGT detection method for future applications.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Bushra Arif
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | | | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea.
| | - Arshan Nasir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
20
|
Bao H, Zhao JH, Zhu S, Wang S, Zhang J, Wang XY, Hua B, Liu C, Liu H, Liu SL. Genetic diversity and evolutionary features of type VI secretion systems in Salmonella. Future Microbiol 2019; 14:139-154. [PMID: 30672329 DOI: 10.2217/fmb-2018-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Type VI secretion systems (T6SS) play key roles in bacterial pathogenesis, but their evolutionary features remain largely unclear. In this study, we conducted systematic comparisons among the documented T6SSs in Salmonella and determined their structural diversity, phylogenetic distribution and lineage-specific properties. MATERIALS & METHODS We screened 295 Salmonella genomes for 13 T6SS core components by hidden Markov models and identified 363 T6SS clusters covering types i1, i2, i3 and i4a. RESULTS Type i3 and i4a T6SSs were restricted to Salmonella enterica subspecies enterica and Salmonella bongori, respectively. whereas type i2 T6SSs were conserved between S. enterica subspecies, arizonae and diarizonae. S. enterica subspecies salamae, indica and houtenae harbored only type i1 T6SSs, which had wide distribution and high sequence diversity. CONCLUSION The diverse Salmonella T6SSs have undergone purifying selection pressures during the bacterial evolution and may be involved in host adaptation.
Collapse
Affiliation(s)
- Hongxia Bao
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Jian-Hua Zhao
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Songling Zhu
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Shuang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Jianjuan Zhang
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Xiao-Yu Wang
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Bing Hua
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Chang Liu
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Huidi Liu
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy & Genomics Research Center, Harbin Medical University, Harbin, PR China.,HMU-UCCSM Centre for Infection & Genomics, Harbin Medical University, Harbin, PR China.,Translational Medicine Research & Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China.,Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
21
|
Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: Embracing complexity in host-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:164-181. [PMID: 30466152 DOI: 10.1111/tpj.14170] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 05/18/2023]
Abstract
Environmental sequencing shows that plants harbor complex communities of microbes that vary across environments. However, many approaches for mapping plant genetic variation to microbe-related traits were developed in the relatively simple context of binary host-microbe interactions under controlled conditions. Recent advances in sequencing and statistics make genome-wide association studies (GWAS) an increasingly promising approach for identifying the plant genetic variation associated with microbes in a community context. This review discusses early efforts on GWAS of the plant phyllosphere microbiome and the outlook for future studies based on human microbiome GWAS. A workflow for GWAS of the phyllosphere microbiome is then presented, with particular attention to how perspectives on the mechanisms, evolution and environmental dependence of plant-microbe interactions will influence the choice of traits to be mapped.
Collapse
Affiliation(s)
- Kathleen Beilsmith
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Manus P M Thoen
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Benjamin Brachi
- BIOGECO, INRA, University of Bordeaux, 33610, Cestas, France
| | - Andrew D Gloss
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Mohammad H Khan
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
22
|
Liu C, Wright B, Allen-Vercoe E, Gu H, Beiko R. Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions. Genome Biol Evol 2018; 10:2255-2265. [PMID: 30137329 PMCID: PMC6130602 DOI: 10.1093/gbe/evy178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 11/20/2022] Open
Abstract
Homologous genes in prokaryotes can be described using phylogenetic profiles which summarize their patterns of presence or absence across a set of genomes. Phylogenetic profiles have been used for nearly twenty years to cluster genes based on measures such as the Euclidean distance between profile vectors. However, most approaches do not take into account the phylogenetic relationships amongst the profiled genomes, and overrepresentation of certain taxonomic groups (i.e., pathogenic species with many sequenced representatives) can skew the interpretation of profiles. We propose a new approach that uses a coevolutionary method defined by Pagel to account for the phylogenetic relationships amongst target organisms, and a hierarchical-clustering approach to define sets of genes with common distributions across the organisms. The clusters we obtain using our method show greater evidence of phylogenetic and functional clustering than a recently published approach based on hidden Markov models. Our clustering method identifies sets of amino-acid biosynthesis genes that constitute cohesive pathways, and motility/chemotaxis genes with common histories of descent and lateral gene transfer.
Collapse
Affiliation(s)
- Chaoyue Liu
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Mathematics and Statistics, Faculty of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Benjamin Wright
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Hong Gu
- Department of Mathematics and Statistics, Faculty of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Hassan Y, Zhou T. Addressing the mycotoxin deoxynivalenol contamination with soil-derived bacterial and enzymatic transformations targeting the C3 carbon. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The search for feasible biological means of detoxifying mycotoxins has attained successful accomplishments in the past twenty years due to the involvement of many teams coming from diverse backgrounds and research expertise. The recently witnessed breakthroughs in the field of bacterial genomics (including next-generation sequencing), proteomics, and computational biology helped all in shaping the current understanding of how microorganisms/mycotoxins/environmental factors intertwined and interact together, hence paving the road for some substantial discoveries. This perspective review summarises the advances that were observed in the past two decades within the deoxynivalenol (DON) bio-detoxification field. It highlights the research efforts and progresses that were made in the arena of the aerobic oxidation and epimerization of this mycotoxin at the C3 carbon carried out by multiple Devosia species. Moreover, it sets practical examples and discusses how the recent standing-knowledge of bacterial detoxifications of this mycotoxin has evolved into a fascinating potential of empirical bacterial and enzymatic solutions aiming at addressing DON contamination. The obtained results argue for determining the involved enzyme’s co-factors and defining the chemistry behind the established catalytic activity at an early stage of investigation to maximise the chances of isolating the responsible enzymes.
Collapse
Affiliation(s)
- Y.I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - T. Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
24
|
Zakharenko LP, Ivannikov AV, Ignatenko OM, Zakharov IK. Search for Canonical P Element in Genomes of Drosophilinae Subfamily Species. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1238-1247. [PMID: 28787798 DOI: 10.1016/j.scitotenv.2017.07.249] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/12/2023]
Abstract
Bacteria belonging to the genera Sphingomonas and Sphingobium are known for their ability to catabolize aromatic compounds. In this study, we analyzed the whole genome sequences of 26 strains in the genera Sphingomonas and Sphingobium to gain insight into dissemination of bioremediation capabilities, biodegradation potential, central pathways and genome plasticity. Phylogenetic analysis revealed that both Sphingomonas sp. strain BHC-A and Sphingomonas paucimobilis EPA505 should be placed in the genus Sphingobium. The bph and xyl gene cluster was found in 6 polycyclic aromatic hydrocarbons-degrading strains. Transposase and IS coding genes were found in the 6 gene clusters, suggesting the mobility of bph and xyl gene clusters. β-ketoadipate and homogentisate pathways were the main central pathways in Sphingomonas and Sphingobium strains. A large number of oxygenase coding genes were predicted in the 26 genomes, indicating a huge biodegradation potential of the Sphingomonas and Sphingobium strains. Horizontal gene transfer related genes and prophages were predicted in the analyzed strains, suggesting the ongoing evolution and shaping of the genomes. Analysis of the 26 genomes in this work contributes to the understanding of dispersion of bioremediation capabilities, bioremediation potential and genome plasticity in strains belonging to the genera Sphingomonas and Sphingobium.
Collapse
Affiliation(s)
- Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengjie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME JOURNAL 2017; 12:885-897. [PMID: 29259290 DOI: 10.1038/s41396-017-0017-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/17/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.
Collapse
|
27
|
|
28
|
Malik SS, Azem-E-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do Viruses Exchange Genes across Superkingdoms of Life? Front Microbiol 2017; 8:2110. [PMID: 29163404 PMCID: PMC5671483 DOI: 10.3389/fmicb.2017.02110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
Collapse
Affiliation(s)
- Shahana S Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Azem-E-Zahra
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
29
|
Déraspe M, Raymond F, Boisvert S, Culley A, Roy PH, Laviolette F, Corbeil J. Phenetic Comparison of Prokaryotic Genomes Using k-mers. Mol Biol Evol 2017; 34:2716-2729. [PMID: 28957508 PMCID: PMC5850840 DOI: 10.1093/molbev/msx200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets.
Collapse
Affiliation(s)
- Maxime Déraspe
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada
| | - Frédéric Raymond
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Quebec City, QC, Canada
| | | | - Alexander Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Quebec City, QC, Canada
| | - Paul H. Roy
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Quebec City, QC, Canada
| | - François Laviolette
- Centre de Recherche en Données Massives de l’Université Laval, Quebec City, QC, Canada
- Département d’Informatique et de Génie Logiciel, Université Laval, Quebec City, QC, Canada
| | - Jacques Corbeil
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Quebec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
30
|
Venter SN, Palmer M, Beukes CW, Chan WY, Shin G, van Zyl E, Seale T, Coutinho TA, Steenkamp ET. Practically delineating bacterial species with genealogical concordance. Antonie van Leeuwenhoek 2017; 110:1311-1325. [DOI: 10.1007/s10482-017-0869-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
31
|
Bacterial Communities and Antibiotic Resistance Communities in a Full-Scale Hospital Wastewater Treatment Plant by High-Throughput Pyrosequencing. WATER 2016. [DOI: 10.3390/w8120580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Appl Environ Microbiol 2016; 82:7019-7029. [PMID: 27663031 DOI: 10.1128/aem.02190-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. IMPORTANCE This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities/diversities with environmental factors. The findings of this study help us to better understand the diversities of the arsenite-oxidizing bacteria and the geochemical cycle of arsenic in the tailings of the Shimen realgar mine and gain insights into the microbial mechanisms by which the secondary minerals of the tailings were formed. This work also offers a set of unique arsenite-oxidizing bacteria for basic research of the molecular regulation of arsenite oxidation in bacterial cells and for the environmentally friendly bioremediation of arsenic-contaminated groundwater.
Collapse
|
33
|
Abstract
As genes originate at different evolutionary times, they harbor distinctive genomic signatures of evolutionary ages. Although previous studies have investigated different gene age-related signatures, what signatures dominantly associate with gene age remains unresolved. Here we address this question via a combined approach of comprehensive assignment of gene ages, gene family identification, and multivariate analyses. We first provide a comprehensive and improved gene age assignment by combining homolog clustering with phylogeny inference and categorize human genes into 26 age classes spanning the whole tree of life. We then explore the dominant age-related signatures based on a collection of 10 potential signatures (including gene composition, gene length, selection pressure, expression level, connectivity in protein–protein interaction network and DNA methylation). Our results show that GC content and connectivity in protein–protein interaction network (PPIN) associate dominantly with gene age. Furthermore, we investigate the heterogeneity of dominant signatures in duplicates and singletons. We find that GC content is a consistent primary factor of gene age in duplicates and singletons, whereas PPIN is more strongly associated with gene age in singletons than in duplicates. Taken together, GC content and PPIN are two dominant signatures in close association with gene age, exhibiting heterogeneity in duplicates and singletons and presumably reflecting complex differential interplays between natural selection and mutation.
Collapse
Affiliation(s)
- Hongyan Yin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Guangyu Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lina Ma
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China
| | - Soojin V Yi
- School of Biology, Georgia Institute of Technology, Atlanta
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Sojo V, Dessimoz C, Pomiankowski A, Lane N. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life. Mol Biol Evol 2016; 33:2874-2884. [PMID: 27501943 PMCID: PMC5062322 DOI: 10.1093/molbev/msw164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine.
Collapse
Affiliation(s)
- Victor Sojo
- CoMPLEX, University College London, London, United Kingdom Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Systems Biophysics, Faculty of Physics, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Christophe Dessimoz
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Andrew Pomiankowski
- CoMPLEX, University College London, London, United Kingdom Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nick Lane
- CoMPLEX, University College London, London, United Kingdom Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
35
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Gouy R, Baurain D, Philippe H. Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140329. [PMID: 26323760 DOI: 10.1098/rstb.2014.0329] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article aims to shed light on difficulties in rooting the tree of life (ToL) and to explore the (sociological) reasons underlying the limited interest in accurately addressing this fundamental issue. First, we briefly review the difficulties plaguing phylogenetic inference and the ways to improve the modelling of the substitution process, which is highly heterogeneous, both across sites and over time. We further observe that enriched taxon samplings, better gene samplings and clever data removal strategies have led to numerous revisions of the ToL, and that these improved shallow phylogenies nearly always relocate simple organisms higher in the ToL provided that long-branch attraction artefacts are kept at bay. Then, we note that, despite the flood of genomic data available since 2000, there has been a surprisingly low interest in inferring the root of the ToL. Furthermore, the rare studies dealing with this question were almost always based on methods dating from the 1990s that have been shown to be inaccurate for much more shallow issues! This leads us to argue that the current consensus about a bacterial root for the ToL can be traced back to the prejudice of Aristotle's Great Chain of Beings, in which simple organisms are ancestors of more complex life forms. Finally, we demonstrate that even the best models cannot yet handle the complexity of the evolutionary process encountered both at shallow depth, when the outgroup is too distant, and at the level of the inter-domain relationships. Altogether, we conclude that the commonly accepted bacterial root is still unproven and that the root of the ToL should be revisited using phylogenomic supermatrices to ensure that new evidence for eukaryogenesis, such as the recently described Lokiarcheota, is interpreted in a sound phylogenetic framework.
Collapse
Affiliation(s)
- Richard Gouy
- Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège 4000, Belgium Centre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d'Ecologie Expérimentale du CNRS, Moulis 09200, France
| | - Denis Baurain
- Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège 4000, Belgium
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d'Ecologie Expérimentale du CNRS, Moulis 09200, France Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
37
|
Zhang Y, Zhuang Y, Geng J, Ren H, Xu K, Ding L. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:184-191. [PMID: 26815295 DOI: 10.1016/j.scitotenv.2016.01.078] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 05/22/2023]
Abstract
This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yao Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
38
|
Eckshtain-Levi N, Shkedy D, Gershovits M, Da Silva GM, Tamir-Ariel D, Walcott R, Pupko T, Burdman S. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits. Front Microbiol 2016; 7:430. [PMID: 27092114 PMCID: PMC4821854 DOI: 10.3389/fmicb.2016.00430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/17/2016] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen.
Collapse
Affiliation(s)
- Noam Eckshtain-Levi
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Dafna Shkedy
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Michael Gershovits
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | | | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, The University of Georgia, AthensGA, USA
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
39
|
Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, Hélias V, Van Gijsegem F, Faure D. Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genomics 2015; 16:788. [PMID: 26467299 PMCID: PMC4607151 DOI: 10.1186/s12864-015-1997-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/03/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution. RESULTS We combined Illumina and PacBio technologies to complete the genome sequence of D. solani strain 3337 that was used as a reference to compare with 19 other genomes (including that of the type strain IPO2222(T)) which were generated by Illumina technology. This population genomic analysis highlighted an unexpected variability among D. solani isolates since it led to the characterization of two distinct sub-groups within the D. solani species. This approach also revealed different types of variations such as scattered SNP/InDel variations as well as replacing and additive horizontal gene transfers (HGT). Infra-species (between the two D. solani sub-groups) and inter-species (between D. solani and D. dianthicola) replacing HGTs were observed. Finally, this work pointed that genetic and functional variation in the motility trait could contribute to aggressiveness variability in D. solani. CONCLUSIONS This work revealed that D. solani genomic variability may be caused by SNPs/InDels as well as replacing and additive HGT events, including plasmid acquisition; hence the D. solani genomes are more dynamic than that were previously proposed. This work alerts on precautions in molecular diagnosis of this emerging pathogen.
Collapse
Affiliation(s)
- Slimane Khayi
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
- Université Moulay Ismaïl, Faculté des Sciences, Département de Biologie, Meknès, Morocco.
| | - Pauline Blin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
| | - Jacques Pédron
- UPMC Univ Paris 06, UMR 7618, IEES Paris (Institute of Ecology and Environmental Sciences), 7 Quai Saint bernard, 75005, Paris, France.
| | - Teik-Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohieddine Moumni
- Université Moulay Ismaïl, Faculté des Sciences, Département de Biologie, Meknès, Morocco.
| | - Valérie Hélias
- Fédération Nationale des Producteurs de Plants de Pomme de Terre-Recherche développement Promotion du Plant de Pomme de Terre (FN3PT-RD3PT), 75008, Paris, France.
- UMR 1349 IGEPP INRA - Agrocampus Ouest Rennes, 35653, LeRheu, France.
| | - Frédérique Van Gijsegem
- INRA, UMR 1392, IEES Paris (Institute of Ecology and Environmental Sciences), 7 Quai Saint Bernard, 75005, Paris, France.
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
40
|
Zakharevich NV, Averina OV, Klimina KM, Kudryavtseva AV, Kasianov AS, Makeev VJ, Danilenko VN. Complete Genome Sequence of Bifidobacterium longum GT15: Identification and Characterization of Unique and Global Regulatory Genes. MICROBIAL ECOLOGY 2015; 70:819-834. [PMID: 25894918 DOI: 10.1007/s00248-015-0603-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
In this study, we report the first completely annotated genome sequence of the Russia origin Bifidobacterium longum subsp. longum strain GT15. Comparative genomic analysis of this genome with other available completely annotated genome sequences of B. longum strains isolated from other countries has revealed a high degree of conservation and synteny across the entire genomes. However, it was discovered that the open reading frames to 35 genes were detected only from the B. longum GT15 genome and absent from other genomes B. longum strains (not of Russian origin). These so-called unique genes (UGs) represent a total length of 39,066 bp, with G + C content ranging from 37 to 65 %. Interestingly, certain genes were detected in other B. longum strains of Russian origin. In our analysis, we examined genes for global regulatory systems: proteins of toxin-antitoxin (TA) systems type II, serine/threonine protein kinases (STPKs) of eukaryotic type, and genes of the WhiB-like family proteins. In addition, we have made in silico analysis of all the most significant probiotic genes and considered genes involved in epigenetic regulation and genes responsible for producing various neuromediators. This genome sequence may elucidate the biology of this probiotic strain as a promising candidate for practical (pharmaceutical) applications.
Collapse
Affiliation(s)
| | - Olga V Averina
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Ksenia M Klimina
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Vavilova str. 32, 119991, Moscow, Russia
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Vavilova str. 32, 119991, Moscow, Russia
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Gubkina str. 3, 119991, Moscow, Russia
| |
Collapse
|
41
|
Doyle VP, Young RE, Naylor GJP, Brown JM. Can We Identify Genes with Increased Phylogenetic Reliability? Syst Biol 2015; 64:824-37. [DOI: 10.1093/sysbio/syv041] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
|
42
|
Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281. [PMID: 25914684 PMCID: PMC4391266 DOI: 10.3389/fmicb.2015.00281] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/21/2015] [Indexed: 11/13/2022] Open
Abstract
In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Carmen Scheuner
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Markus Göker
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Hans-Peter Klenk
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany ; School of Biology, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, Bart R, Staskawicz B, Boyer C, Vallad GE, Pruvost O, Jones JB, Goss EM. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol 2015; 81:1520-9. [PMID: 25527544 PMCID: PMC4309686 DOI: 10.1128/aem.03000-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/14/2014] [Indexed: 01/29/2023] Open
Abstract
Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Mustafa O. Jibrin
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Neha Potnis
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Misrak Kebede
- Plant Pathology Department, School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Allison Schwartz
- Department of Plant and Microbial Biology, University of California—Berkeley, California, USA
| | | | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California—Berkeley, California, USA
| | - Claudine Boyer
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France
| | - Gary E. Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Yang Y, Li B, Zou S, Fang HHP, Zhang T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. WATER RESEARCH 2014; 62:97-106. [PMID: 24937359 DOI: 10.1016/j.watres.2014.05.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance has become a serious threat to human health. Sewage treatment plant (STP) is one of the major sources of antibiotic resistance genes (ARGs) in natural environment. High-throughput sequencing-based metagenomic approach was applied to investigate the broad-spectrum profiles and fate of ARGs in a full scale STP. Totally, 271 ARGs subtypes belonging to 18 ARGs types were identified by the broad scanning of metagenomic analysis. Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge. 78 ARGs subtypes persisted through the biological wastewater and sludge treatment process. The high removal efficiency of 99.82% for total ARGs in wastewater suggested that sewage treatment process is effective in reducing ARGs. But the removal efficiency of ARGs in sludge treatment was not as good as that in sewage treatment. Furthermore, the composition of microbial communities was examined and the correlation between microbial community and ARGs was investigated using redundancy analysis. Significant correlation between 6 genera and the distribution of ARGs were found and 5 of the 6 genera included potential pathogens. This is the first study on the fate of ARGs in STP using metagenomic analysis with high-throughput sequencing and hopefully would enhance our knowledge on fate of ARGs in STP.
Collapse
Affiliation(s)
- Ying Yang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Shichun Zou
- Institute of Marine Science and Technology, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Herbert H P Fang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Use of genome sequencing to assess nucleotide structure variation of Staphylococcus aureus strains cultured in spaceflight on Shenzhou-X, under simulated microgravity and on the ground. Microbiol Res 2014; 170:61-8. [PMID: 25304992 DOI: 10.1016/j.micres.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
The extreme environment of space could affect microbial behavior and may increase the risk of infectious disease during spaceflight. However, the molecular genetic changes of methicillin-resistant Staphylococcus aureus (MRSA) in response to the spaceflight environment have not been fully clarified. In the present study, we determined the draft genome sequences for an ancestral S. aureus strain (LCT-SAO) isolated from a clinical sample and three derivative strains, LCT-SAS, LCT-SAM and LCT-SAG, cultured in parallel during the spaceflight Shenzhou-X, under simulated microgravity and on the ground, respectively. To evaluate the impact of short-term spaceflight on the MRSA strains, comparative genomic analysis was implemented. Genome-based mapping of toxin genes and antibiotic resistance genes confirmed that these strains have the conventional pathogenicity and resistance to drugs, as none of the strains showed significant changes in these regions after culturing in the three different environments; this result suggests that spaceflight may not change bacterial virulence or drug resistance. Thirty-nine strain-specific sequence variants (SVs) were identified throughout the genomes, and the three derivatives exhibited almost the same mutation rates. Fifty-nine percent of SVs were located in the intergenic regions of the genomes, indicating that S. aureus may have an extremely robust repair mechanism responsible for recognizing and repairing DNA replication mismatches. It is noteworthy that strain LCT-SAS, cultured in space, presented the most unique SVs (n=9) and shared the fewest SVs with LCT-SAM (n=5) and LCT-SAG (n=4). Furthermore, we identified 10 potential deletion regions and 2 potential insertion regions, with LCT-SAS appearing more fragile than other strains by this measure. These results suggest that the environment of space is inherently complicated, with multiple variables, and cannot be simulated in a simple manner. Our results represent the first analysis of nucleotide structure variation of S. aureus strains in a spaceflight environment and also provide a valuable insight for understanding the mutation strategies of MRSA on earth.
Collapse
|
46
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
47
|
Steppe M, Van Nieuwerburgh F, Vercauteren G, Boyen F, Eeckhaut V, Deforce D, Haesebrouck F, Ducatelle R, Van Immerseel F. Safety assessment of the butyrate-producing Butyricicoccus pullicaecorum strain 25-3(T), a potential probiotic for patients with inflammatory bowel disease, based on oral toxicity tests and whole genome sequencing. Food Chem Toxicol 2014; 72:129-37. [PMID: 25007784 DOI: 10.1016/j.fct.2014.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 02/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation of the digestive tract, characterized by dysbiosis of the intestinal microbiota. Probiotics have been suggested as a strategy to reduce active disease or extend remission. We isolated and characterized the butyrate-producing strain Butyricicoccus pullicaecorum 25-3(T) and identified it as a potential probiotic for patients with IBD. To evaluate the safety of 25-3(T) for use in humans, we conducted a standard acute oral toxicity test and a 28-day repeated oral dose toxicity test. The complete genome of B. pullicaecorum 25-3(T) was sequenced to search for virulence factors and antibiotic resistance determinants. The minimum inhibitory concentration (MIC) of 21 antimicrobials was determined. Results showed no adverse effects in the oral toxicity tests. B. pullicaecorum 25-3(T) is resistant against aminoglycosides and trimethoprim. The genome of 25-3(T) contains no virulence factors, one gene related to harmful metabolites and 52 sequences with high similarity to antimicrobial and toxic compound resistance genes, that did not correspond with a resistant phenotype. This first report of a safety assessment of a butyrate-producing strain from Clostridium cluster IV shows that B. pullicaecorum 25-3(T) is a non-pathogenic strain, but carries antibiotic resistance genes with the risk of transfer, that need further investigation.
Collapse
Affiliation(s)
- Marjan Steppe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Griet Vercauteren
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
48
|
Zhang M, Pereira e Silva MDC, Chaib De Mares M, van Elsas JD. The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 2014; 89:516-26. [DOI: 10.1111/1574-6941.12350] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- MiaoZhi Zhang
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| | | | - Maryam Chaib De Mares
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| |
Collapse
|
49
|
Dröge J, Buczek D, Suzuki Y, Makałowski W. Amoebozoa possess lineage-specific globin gene repertoires gained by individual horizontal gene transfers. Int J Biol Sci 2014; 10:689-701. [PMID: 25013378 PMCID: PMC4081604 DOI: 10.7150/ijbs.8327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/24/2014] [Indexed: 12/13/2022] Open
Abstract
The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times.
Collapse
Affiliation(s)
- Jasmin Dröge
- 1. Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Str. 14, 48149 Muenster, Germany
| | - Dorota Buczek
- 1. Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Str. 14, 48149 Muenster, Germany ; 2. Institute of Molecular Biology and Biotechnology, A. Mickiewicz University, Poznan, Poland
| | - Yutaka Suzuki
- 3. Department of Medical Genomic Sciences, University of Tokyo, Tokyo, Japan
| | - Wojciech Makałowski
- 1. Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Str. 14, 48149 Muenster, Germany ; 3. Department of Medical Genomic Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Som A. Causes, consequences and solutions of phylogenetic incongruence. Brief Bioinform 2014; 16:536-48. [PMID: 24872401 DOI: 10.1093/bib/bbu015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/05/2014] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic analysis is used to recover the evolutionary history of species, genes or proteins. Understanding phylogenetic relationships between organisms is a prerequisite of almost any evolutionary study, as contemporary species all share a common history through their ancestry. Moreover, it is important because of its wide applications that include understanding genome organization, epidemiological investigations, predicting protein functions, and deciding the genes to be analyzed in comparative studies. Despite immense progress in recent years, phylogenetic reconstruction involves many challenges that create uncertainty with respect to the true evolutionary relationships of the species or genes analyzed. One of the most notable difficulties is the widespread occurrence of incongruence among methods and also among individual genes or different genomic regions. Presence of widespread incongruence inhibits successful revealing of evolutionary relationships and applications of phylogenetic analysis. In this article, I concisely review the effect of various factors that cause incongruence in molecular phylogenies, the advances in the field that resolved some factors, and explore unresolved factors that cause incongruence along with possible ways for tackling them.
Collapse
|