1
|
Abdelsalam SA, M Abdelhafez A, H Abu-Hussien S, A Abou-Taleb K. Factors Influencing Decolourization and Detoxification of Remazol Brilliant Blue R Dye by Aspergillus flavus. Pak J Biol Sci 2021; 24:1183-1194. [PMID: 34842391 DOI: 10.3923/pjbs.2021.1183.1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objectives:</b> Anthraquinone synthetic dyes are widely used in textile, dyeing and paper painting. The discharge of these dyes into the environment causes detriment. The removal of physiochemical dyes is sometimes unsuccessful and expensive. Biological removal is inexpensive, eco-friendly and may break down organic contaminants. In the current work, a fungal technique was applied to decolorize and detoxify dye. <b>Materials and Methods:</b> Dye decolorizing fungi isolation, selection and identification of the most effective isolate and dye decolorization optimization based on carbon and nitrogen sources. In addition, the product's cytotoxicity and metabolites were tested. The enzyme activities were measured to determine dye decolorization. <b>Results:</b> Decolorization of reactive blue 19 dye by the most effective fungal strain isolate (5BF) isolated from industrial effluents were studied. This isolate was identified as <i>Aspergillus flavus</i> based on phenotypic characteristics and confirmed using 18S rRNA gene sequencing. Thin-layer chromatography indicated that this strain is aflatoxins free. Furthermore, metabolites produced from dye treatment with <i>A. flavus</i> were assessed using gas chromatography-mass spectrometry. Toxicity data revealed that <i>A. flavus</i> metabolites were not toxic to plants. Using a one-factor-at-a-time optimization technique, a maximum decolorization percentage (99%) was obtained after 72 hrs in the presence of mannitol and NH<sub>4</sub>NO<sub>3</sub> or NH<sub>4</sub>Cl as carbon and nitrogen sources. Two enzymes (laccase and manganese peroxidase) were shown to be active during dye decolorization by <i>A. flavus</i>. <b>Conclusion:</b> The <i>A. flavus</i> strain was shown to be safe when it came to removing dye from a synthetic medium with high efficiency and their metabolites had no negative influence on the environment. As a result, this strain will be used in the future for dye wastewater bioremediation.
Collapse
|
2
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
3
|
Pitner RA, Scarpelli AH, Leonard JN. Regulation of Bacterial Gene Expression by Protease-Alleviated Spatial Sequestration (PASS). ACS Synth Biol 2015; 4:966-74. [PMID: 25822588 DOI: 10.1021/sb500302y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In natural microbial systems, conditional spatial sequestration of transcription factors enables cells to respond rapidly to changes in their environment or intracellular state by releasing presynthesized regulatory proteins. Although such a mechanism may be useful for engineering synthetic biology technologies ranging from cell-based biosensors to biosynthetic platforms, to date it remains unknown how or whether such conditional spatial sequestration may be engineered. In particular, based upon seemingly contradictory reports in the literature, it is not clear whether subcellular spatial localization of a transcription factor within the cytoplasm is sufficient to preclude regulation of cognate promoters on plasmid-borne or chromosomal loci. Here, we describe a modular, orthogonal platform for investigating and implementing this mechanism using protease-alleviated spatial sequestration (PASS). In this system, expression of an exogenous protease mediates the proteolytic release of engineered transcriptional regulators from the inner face of the Escherichia coli cytoplasmic membrane. We demonstrate that PASS mediates robust, conditional regulation of either transcriptional repression, via tetR, or transcriptional activation, by the λ phage CI protein. This work provides new insights into a biologically important facet of microbial gene expression and establishes a new strategy for engineering conditional transcriptional regulation for the microbial synthetic biology toolbox.
Collapse
Affiliation(s)
- Ragan A. Pitner
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrew H. Scarpelli
- Interdepartmental
Biosciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 2015; 197:1394-407. [PMID: 25666133 DOI: 10.1128/jb.02395-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings, taken together, suggest that C. glutamicum MalP is the first α-glucan phosphorylase that does not fit into the current system for classification of bacterial α-glucan phosphorylases and exemplifies the complex mechanisms underlying the control of glycogen content and maltose metabolism in this model organism.
Collapse
|
5
|
Schiefner A, Gerber K, Brosig A, Boos W. Structural and mutational analyses of Aes, an inhibitor of MalT in Escherichia coli. Proteins 2013; 82:268-77. [DOI: 10.1002/prot.24383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- André Schiefner
- Lehrstuhl für Biologische Chemie; Technische Universität München; 85350 Freising-Weihenstephan Germany
| | - Kinga Gerber
- Fachbereich Biologie; Universität Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Alexander Brosig
- Fachbereich Biologie; Universität Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Winfried Boos
- Fachbereich Biologie; Universität Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
6
|
Görke B. Killing two birds with one stone: an ABC transporter regulates gene expression through sequestration of a transcriptional regulator at the membrane. Mol Microbiol 2012; 85:597-601. [PMID: 22742494 DOI: 10.1111/j.1365-2958.2012.08156.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional regulators are controlled through various, mostly well-understood, principles. In the study of Richet et al., published in this issue of Molecular Microbiology, fluorescence microscopy was used to uncover an unorthodox mechanism that relies on the dynamic shuttling of a gene regulator between the membrane and the chromosome. When not occupied with transport, the maltose-specific ABC transporter sequesters and thereby inactivates its cognate transcriptional regulator MalT. Upon maltose transport, MalT is released from the membrane and activates the maltose utilization and transport genes. This mechanism prevents induction of MalT by endogenously produced maltotriose, which is the inducer. Thus, the maltose uptake system is a trigger transporter with a bi-functional role in transport and regulation.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Characterization of MtfA, a novel regulatory output signal protein of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 2011; 194:1024-35. [PMID: 22178967 DOI: 10.1128/jb.06387-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glucose-phosphotransferase system (PTS) in Escherichia coli K-12 is a complex sensory and regulatory system. In addition to its central role in glucose uptake, it informs other global regulatory networks about carbohydrate availability and the physiological status of the cell. The expression of the ptsG gene encoding the glucose-PTS transporter EIICB(Glc) is primarily regulated via the repressor Mlc, whose inactivation is glucose dependent. During transport of glucose and dephosphorylation of EIICB(Glc), Mlc binds to the B domain of the transporter, resulting in derepression of several Mlc-regulated genes. In addition, Mlc can also be inactivated by the cytoplasmic protein MtfA in a direct protein-protein interaction. In this study, we identified the binding site for Mlc in the carboxy-terminal region of MtfA by measuring the effect of mutated MtfAs on ptsG expression. In addition, we demonstrated the ability of MtfA to inactivate an Mlc super-repressor, which cannot be inactivated by EIICB(Glc), by using in vivo titration and gel shift assays. Finally, we characterized the proteolytic activity of purified MtfA by monitoring cleavage of amino 4-nitroanilide substrates and show Mlc's ability to enhance this activity. Based on our findings, we propose a model of MtfA as a glucose-regulated peptidase activated by cytoplasmic Mlc. Its activity may be necessary during the growth of cultures as they enter the stationary phase. This proteolytic activity of MtfA modulated by Mlc constitutes a newly identified PTS output signal that responds to changes in environmental conditions.
Collapse
|
8
|
Gabor E, Göhler AK, Kosfeld A, Staab A, Kremling A, Jahreis K. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 2011; 90:711-20. [PMID: 21621292 DOI: 10.1016/j.ejcb.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The phosphoenolpyruvate-(PEP)-dependent-carbohydrate:phosphotransferase systems (PTSs) of enteric bacteria constitute a complex transport and sensory system. Such a PTS usually consists of two cytoplasmic energy-coupling proteins, Enzyme I (EI) and HPr, and one of more than 20 different carbohydrate-specific membrane proteins named Enzyme II (EII), which catalyze the uptake and concomitant phosphorylation of numerous carbohydrates. The most prominent representative is the glucose-PTS, which uses a PTS-typical phosphorylation cascade to transport and phosphorylate glucose. All components of the glucose-PTS interact with a large number of non-PTS proteins to regulate the carbohydrate flux in the bacterial cell. Several aspects of the glucose-PTS have been intensively investigated in various research projects of many groups. In this article we will review our recent findings on a Glc-PTS-dependent metalloprotease, on the interaction of EIICB(Glc) with the regulatory peptide SgrT, on the structure of the membrane spanning C-domain of the glucose transporter and on the modeling approaches of ptsG regulation, respectively, and discuss them in context of general PTS research.
Collapse
Affiliation(s)
- Elisabeth Gabor
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Genetics, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Wallden M, Elf J. Studying transcriptional interactions in single cells at sufficient resolution. Curr Opin Biotechnol 2011; 22:81-6. [PMID: 21071200 DOI: 10.1016/j.copbio.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022]
Abstract
Our ability to dissect and understand the principles of gene regulatory circuits is partly limited by the resolution of our experimental assays. In this brief review, we discuss aspects of gene expression in microbial organisms apparent only when increasing the experimental resolution from populations to single cells and sub-cellular structures, from snap-shots to high-speed time-lapse movies and from molecular ensembles to single molecules.
Collapse
Affiliation(s)
- Mats Wallden
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | | |
Collapse
|
10
|
Krämer R. Bacterial stimulus perception and signal transduction: response to osmotic stress. CHEM REC 2010; 10:217-29. [PMID: 20607761 DOI: 10.1002/tcr.201000005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When exposed to osmotic stress from the environment, bacteria act to maintain cell turgor and hydration by responding both on the level of gene transcription and protein activity. Upon a sudden decrease in external osmolality, internal solutes are released by the action of membrane embedded mechanosensitive channels. In response to an osmotic upshift, the concentration of osmolytes in the cytoplasm is increased both by de novo synthesis and by active uptake. In order to coordinate these processes of osmoregulation, cells are equipped with systems and mechanisms of sensing physical stimuli correlated to changes in the external osmolality (osmosensing), with pathways to transduce these stimuli into useful signals which can be processed in the cell (signal transduction), and mechanisms of regulating proper responses in the cell to recover from the environmental stress and to maintain all necessary physiological functions (osmoregulation). These processes will be described by a number of representative examples, mainly of osmoreactive transport systems with a focus on available data of their molecular mechanism.
Collapse
Affiliation(s)
- Reinhard Krämer
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany.
| |
Collapse
|
11
|
The phosphoenolpyruvate phosphotransferase system: as important for biofilm formation by Vibrio cholerae as it is for metabolism in Escherichia coli. J Bacteriol 2010; 192:4083-5. [PMID: 20562301 DOI: 10.1128/jb.00641-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Reddy PP, Reddy G, Sulochana M. Highly Thermostable β-fructofuranosidase from Aspergillus niger PSSF21 and its Application in the Synthesis of Fructooligosacharides from Agro Industrial Residue. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajbkr.2010.86.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Kos V, Ford RC. The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 2009; 66:3111-26. [PMID: 19544044 PMCID: PMC11115812 DOI: 10.1007/s00018-009-0064-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
The ATP-binding cassette family is one of the largest groupings of membrane proteins, moving allocrites across lipid membranes, using energy from ATP. In bacteria, they reside in the inner membrane and are involved in both uptake and export. In eukaryotes, these transporters reside in the cell's internal membranes as well as in the plasma membrane and are unidirectional-out of the cytoplasm. The range of substances that these proteins can transport is huge, which makes them interesting for structure-function studies. Moreover, their abundance in nature has made them targets for structural proteomics consortia. There are eight independent structures for ATP-binding cassette transporters, making this one of the best characterised membrane protein families. Our understanding of the mechanism of transport across membranes and membrane protein structure in general has been enhanced by recent developments for this family.
Collapse
Affiliation(s)
- Veronica Kos
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Robert Curtis Ford
- Faculty of Life Sciences, Manchester Interdisplinary Biocentre, The University of Manchester, Manchester, M1 7DN UK
| |
Collapse
|
14
|
Tetsch L, Jung K. How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information. Amino Acids 2009; 37:467-77. [PMID: 19198980 DOI: 10.1007/s00726-009-0235-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/29/2008] [Indexed: 01/18/2023]
Abstract
In order to adapt to ever changing environmental conditions, bacteria sense environmental stimuli, and convert them into signals that are transduced intracellularly. Several mechanisms have evolved by which receptors transmit signals across the cytoplasmic membrane. Stimulus perception may trigger receptor dimerization and/or conformational changes. Another mechanism involves the proteolytic procession of a receptor whereby a diffusible cytoplasmic protein is generated. Finally, there is increasing evidence that transport proteins play an important role in transducing signals across the membrane. Transport proteins either directly translocate signaling molecules into the cytoplasm, or transmit information via conformational changes to their interacting partners such as membrane-integrated or soluble components of signal transduction cascades. Employing transport proteins as sensors and regulators of signal transduction represents a sophisticated way of interconnecting metabolic flux and transcriptional regulation in cells.
Collapse
Affiliation(s)
- Larissa Tetsch
- Department of Biology I, Center for Integrated Protein Science Munich, Microbiology of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | |
Collapse
|
15
|
Abstract
MalT is the central transcriptional activator of all mal genes in Escherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect of mal gene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amylomaltase (MalQ) is essential for the metabolism of maltose. It forms maltodextrins and glucose from maltose or maltodextrins. We found that glucose above a concentration of 0.1 mM blocked the activity of the enzyme. malQ mutants when grown in the absence of maltodextrins are endogenously induced by maltotriose that is derived from the degradation of glycogen. Therefore, the fact that glk malQ(+) mutants showed elevated mal gene expression finds its explanation in the reduced ability to remove glucose from MalQ-catalyzed maltodextrin formation and is caused by a metabolically induced MalQ(-) phenotype. However, even in mutants lacking glycogen, Glk controls endogenous induction. We found that overexpressed Glk due to its structural similarity with Mlc, the repressor of malT, binds to the glucose transporter (PtsG), releasing Mlc and thus increasing malT repression. In addition, even in mutants lacking Mlc (and glycogen), the overexpression of glk leads to a reduction in mal gene expression. We interpret this repression by a direct interaction of Glk with MalT concomitant with MalT inhibition. This repression was dependent on the presence of either maltodextrin phosphorylase or amylomaltase and led to the inactivation of MalT.
Collapse
|
16
|
Rajoka MI, Awan MS, Saleem M, Ayub N. Solid-state fermentation-supported enhanced production of α-galactosidase by a deoxyglucose-resistant mutant of Aspergillus niger and thermostabilization of the production process. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9886-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bokhari SAI, Latif F, Rajoka MI. Kinetics of high-Level of ß-glucosidase production by a 2-deoxyglucose-resistant mutant of Humicola lanuginosa in submerged fermentation. BRAZILIAN JOURNAL OF MICROBIOLOGY : [PUBLICATION OF THE BRAZILIAN SOCIETY FOR MICROBIOLOGY] 2008; 39:724-33. [PMID: 24031297 PMCID: PMC3768480 DOI: 10.1590/s1517-838220080004000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/05/2008] [Accepted: 11/10/2008] [Indexed: 11/22/2022]
Abstract
A 2-deoxyglucose-resistant mutant (M7) of Humicola lanuginosa was obtained by exposing conidia to γ-rays and permitting expression in broth containing 0.6% 2-deoxyglucose (DG) and cellobiose (1%) before plating on DG esculin-ferric ammonium citrate agar medium from which colonies showing faster and bigger blackening zones were selected. Kinetic parameters for enhanced ß-glucosidase (BGL) synthesis by M7 were achieved when corncobs acted as the carbon source. The combination between corncobs and corn steep liquor was the best to support higher values of all product formation kinetic parameters. Effect of temperature on the kinetic and thermodynamic attributes of BGL production equilibrium in the wild organism and M7 was studied using batch process at eight different temperatures in shake-flask studies. The best performance was found at 45°C and 20 g L−1 corncobs in 64 h. Both growth and product formation (17.93 U mL−1) were remarkably high at 45°C and both were coupled under optimum working conditions. Product yield of BGL from the mutant M7 (1556.5 U g−1 dry corncobs) was significantly higher than the values reported on all fungal and bacterial systems. Mutation had thermo-stabilization influence on the organism and mutant required lower activation energy for growth and lower magnitudes of enthalpy and entropy for product formation than those demanded by the wild organism, other mesophilic and thermo-tolerant organisms. In the inactivation phase, the organisms needed lower values of activation energy, enthalpy and entropy for product formation equilibrium, confirming thermophilic nature of metabolic network possessed by the mutant organism.
Collapse
Affiliation(s)
- Syed Ali Imran Bokhari
- National Institute for Biotechnology and Genetic Engineering , P.O. Box 577, Faisalabad , Pakistan
| | | | | |
Collapse
|
18
|
Global transcription and metabolic flux analysis of Escherichia coli in glucose-limited fed-batch cultivations. Appl Environ Microbiol 2008; 74:7002-15. [PMID: 18806003 DOI: 10.1128/aem.01327-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A time series of whole-genome transcription profiling of Escherichia coli K-12 W3110 was performed during a carbon-limited fed-batch process. The application of a constant feed rate led to the identification of a dynamic sequence of diverse carbon limitation responses (e.g., the hunger response) and at the same time provided a global view of how cellular and extracellular resources are used: the synthesis of high-affinity transporters guarantees maximal glucose influx, thereby preserving the phosphoenolpyruvate pool, and energy-dependent chemotaxis is reduced in order to provide a more economic "work mode." sigma(S)-mediated stress and starvation responses were both found to be of only minor relevance. Thus, the experimental setup provided access to the hunger response and enabled the differentiation of the hunger response from the general starvation response. Our previous topological model of the global regulation of the E. coli central carbon metabolism through the crp, cra, and relA/spoT modulons is supported by correlating transcript levels and metabolic fluxes and can now be extended. The substrate is extensively oxidized in the tricarboxylic acid (TCA) cycle to enhance energy generation. However, the general rate of oxidative decarboxylation within the pentose phosphate pathway and the TCA cycle is restricted to a minimum. Fine regulation of the carbon flux through these pathways supplies sufficient precursors for biosyntheses. The pools of at least three precursors are probably regulated through activation of the (phosphoenolpyruvate-)glyoxylate shunt. The present work shows that detailed understanding of the genetic regulation of bacterial metabolism provides useful insights for manipulating the carbon flux in technical production processes.
Collapse
|
19
|
Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 2008; 32:891-907. [PMID: 18647176 DOI: 10.1111/j.1574-6976.2008.00125.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glucose is the classical carbon source that is used to investigate the transport, metabolism, and regulation of nutrients in bacteria. Many physiological phenomena like nutrient limitation, stress responses, production of antibiotics, and differentiation are inextricably linked to nutrition. Over the years glucose transport systems have been characterized at the molecular level in more than 20 bacterial species. This review aims to provide an overview of glucose uptake systems found in the eubacterial kingdom. In addition, it will highlight the diverse and sophisticated regulatory features of glucose transport systems.
Collapse
Affiliation(s)
- Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
20
|
Lee SJ, Surma M, Hausner W, Thomm M, Boos W. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 2008; 190:247-56. [DOI: 10.1007/s00203-008-0378-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/17/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
|
21
|
Commichau FM, Stülke J. Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol 2007; 67:692-702. [PMID: 18086213 DOI: 10.1111/j.1365-2958.2007.06071.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All regulatory processes require components that sense the environmental or metabolic conditions of the cell, and sophisticated sensory proteins have been studied in great detail. During the last few years, it turned out that enzymes can control gene expression in response to the availability of their substrates. Here, we review four different mechanisms by which these enzymes interfere with regulation in bacteria. First, some enzymes have acquired a DNA-binding domain and act as direct transcription repressors by binding DNA in the absence of their substrates. A second class is represented by aconitase, which can bind iron responsive elements in the absence of iron to control the expression of genes involved in iron homoeostasis. The third class of these enzymes is sugar permeases of the phosphotransferase system that control the activity of transcription regulators by phosphorylating them in the absence of the specific substrate. Finally, a fourth class of regulatory enzymes controls the activity of transcription factors by inhibitory protein-protein interactions. We suggest that the enzymes that are active in the control of gene expression should be designated as trigger enzymes. An analysis of the occurrence of trigger enzymes suggests that the duplication and subsequent functional specialization is a major pattern in their evolution.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August -University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
22
|
Lee SJ, Böhm A, Krug M, Boos W. The ABC of binding-protein-dependent transport in Archaea. Trends Microbiol 2007; 15:389-97. [PMID: 17764951 DOI: 10.1016/j.tim.2007.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022]
Abstract
The recent solution of the crystal structure of an entire binding-protein-dependent ABC transporter complex from the archaeon Archaeoglobus fulgidus by Locher and his colleagues marks a milestone in the understanding of the ABC transport mechanism. The structure elegantly demonstrates how the motor ATPase alternately opens and closes the inside and outside pores of the transporter and how the substrate-binding protein delivers its substrate. Binding-protein-dependent sugar ABC transporters in the archaea and in bacteria have an additional feature that could connect ABC transporters to gene regulation and to the control of transport activity by cellular processes.
Collapse
Affiliation(s)
- Sung-Jae Lee
- Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
23
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1038] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
24
|
Heinrich A, Woyda K, Brauburger K, Meiss G, Detsch C, Stülke J, Forchhammer K. Interaction of the membrane-bound GlnK-AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J Biol Chem 2006; 281:34909-17. [PMID: 17001076 DOI: 10.1074/jbc.m607582200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII proteins are widespread and highly conserved signal transduction proteins occurring in bacteria, Archaea, and plants and play pivotal roles in controlling nitrogen assimilatory metabolism. This study reports on biochemical properties of the PII-homologue GlnK (originally termed NrgB) in Bacillus subtilis (BsGlnK). Like other PII proteins, the native BsGlnK protein has a trimeric structure and readily binds ATP in the absence of divalent cations, whereas 2-oxoglutarate is only weakly bound. In contrast to other PII-like proteins, Mg2+ severely affects its ATP-binding properties. BsGlnK forms a tight complex with the membrane-bound ammonium transporter AmtB (NrgA), from which it can be relieved by millimolar concentrations of ATP. Immunoprecipitation and co-localization experiments identified a novel interaction between the BsGlnK-AmtB complex and the major transcription factor of nitrogen metabolism, TnrA. In vitro in the absence of ATP, TnrA is completely tethered to membrane (AmtB)-bound GlnK, whereas in extracts from BsGlnK- or AmtB-deficient cells, TnrA is entirely soluble. The presence of 4 mm ATP leads to concomitant solubilization of BsGlnK and TnrA. This ATP-dependent membrane re-localization of TnrA by BsGlnK/AmtB may present a novel mechanism to control the global nitrogen-responsive transcription regulator TnrA in B. subtilis under certain physiological conditions.
Collapse
Affiliation(s)
- Annette Heinrich
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Becker AK, Zeppenfeld T, Staab A, Seitz S, Boos W, Morita T, Aiba H, Mahr K, Titgemeyer F, Jahreis K. YeeI, a novel protein involved in modulation of the activity of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 2006; 188:5439-49. [PMID: 16855233 PMCID: PMC1540043 DOI: 10.1128/jb.00219-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-bound protein EIICB(Glc) encoded by the ptsG gene is the major glucose transporter in Escherichia coli. This protein is part of the phosphoenolpyruvate:glucose-phosphotransferase system, a very important transport and signal transduction system in bacteria. The regulation of ptsG expression is very complex. Among others, two major regulators, the repressor Mlc and the cyclic AMP-cyclic AMP receptor protein activator complex, have been identified. Here we report identification of a novel protein, YeeI, that is involved in the regulation of ptsG by interacting with Mlc. Mutants with reduced activity of the glucose-phosphotransferase system were isolated by transposon mutagenesis. One class of mutations was located in the open reading frame yeeI at 44.1 min on the E. coli K-12 chromosome. The yeeI mutants exhibited increased generation times during growth on glucose, reduced transport of methyl-alpha-d-glucopyranoside, a substrate of EIICB(Glc), reduced induction of a ptsG-lacZ operon fusion, and reduced catabolite repression in lactose/glucose diauxic growth experiments. These observations were the result of decreased ptsG expression and a decrease in the amount of EIICB(Glc). In contrast, overexpression of yeeI resulted in higher expression of ptsG, of a ptsG-lacZ operon fusion, and of the autoregulated dgsA gene. The effect of a yeeI mutation could be suppressed by introducing a dgsA deletion, implying that the two proteins belong to the same signal transduction pathway and that Mlc is epistatic to YeeI. By measuring the surface plasmon resonance, we found that YeeI (proposed gene designation, mtfA) directly interacts with Mlc with high affinity.
Collapse
Affiliation(s)
- Ann-Katrin Becker
- Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yasukawa K, Martin P, Tinsley CR, Nassif X. Pilus-mediated adhesion of Neisseria meningitidis is negatively controlled by the pilus-retraction machinery. Mol Microbiol 2006; 59:579-89. [PMID: 16390451 DOI: 10.1111/j.1365-2958.2005.04954.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The type IV pili (Tfp) of Neisseria meningitidis play an essential role in meningococcal virulence by mediating the initial interaction of bacteria with host cells. Tfp are also subject to retraction, which relies on the PilT protein. Among the other components of the Tfp machinery, PilC1, a pilus-associated protein, is important for Tfp biogenesis and adhesion. Adhesion of N. meningitidis to living epithelial cells was previously shown to rely on the upregulation of the pilC1 gene. On the other hand the lack of induction of pilC1 is believed to be responsible for the low adhesion of N. meningitidis onto fixed dead cells. Surprisingly, a pilT mutant, unable to retract its pili, has been shown to adhere very efficiently onto both living and fixed epithelial cells. To elucidate the mechanisms by which the pilus retraction machinery mediates meningococcal adhesion onto fixed cells, an analysis of gene expression levels in wild-type and pilT meningococci was performed using DNA microarrays. One of the upregulated genes in the pilT strain was pilC1. This result was confirmed using quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis. The transcription starting point responsible for the upregulation of pilC1 in a pilT background was shown to be different from those controlling the induction of pilC1 upon contact with living host cells. Subsequent work using a strain hyperproducing PilT confirmed that PilT downregulates the production of PilC1. Furthermore using a pilC1 allele under the control of IPTG, we demonstrated that the upregulation of pilC1 in a pilT background was responsible for the adhesive phenotype onto fixed dead cells. Taken together our results demonstrate that the pilus retraction machinery negatively controlled the adhesiveness of the Tfp via the expression of pilC1.
Collapse
Affiliation(s)
- Kazutoyo Yasukawa
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 570, Paris F-75015, France
| | | | | | | |
Collapse
|
27
|
Abstract
Before launching a missile, it is necessary to design an efficient safety net for self-protection. In this issue of Cell, Ellermeier et al. (2006) describe the mechanism underlying a biological safety net for the soil bacterium Bacillus subtilis. This bacterium protects itself from a toxic protein it secretes by upregulating an immunity protein, which it does by sequestering a transcriptional repressor at the plasma membrane.
Collapse
Affiliation(s)
- Patrick Stragier
- Institut de Biologie Physico-Chimique, CNRS UPR9073, 75005 Paris, France.
| |
Collapse
|
28
|
Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, Losick R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 2006; 124:549-59. [PMID: 16469701 DOI: 10.1016/j.cell.2005.11.041] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/16/2005] [Accepted: 11/30/2005] [Indexed: 11/24/2022]
Abstract
We describe a three-protein signal-transduction pathway that governs immunity to a protein toxin involved in cannibalism by the spore-forming bacterium Bacillus subtilis. Cells of B. subtilis enter the pathway to sporulate under conditions of nutrient limitation but delay becoming committed to spore formation by killing nonsporulating siblings and feeding on the dead cells. Killing is mediated by the exported toxic protein SdpC. We report that extracellular SdpC induces the synthesis of an immunity protein, SdpI, that protects toxin-producing cells from being killed. SdpI, a polytopic membrane protein, is encoded by a two-gene operon under sporulation control that contains the gene for an autorepressor, SdpR. The autorepressor binds to and blocks the promoter for the operon. Evidence indicates that SdpI is also a signal-transduction protein that responds to the SdpC toxin by sequestering the SdpR autorepressor at the membrane. Sequestration relieves repression and stimulates synthesis of immunity protein.
Collapse
Affiliation(s)
- Craig D Ellermeier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
29
|
Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 2005; 580:1023-35. [PMID: 16375896 DOI: 10.1016/j.febslet.2005.11.079] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
31
|
Martínez-Antonio A, Janga SC, Salgado H, Collado-Vides J. Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. Trends Microbiol 2005; 14:22-7. [PMID: 16311037 DOI: 10.1016/j.tim.2005.11.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Individual cells need to discern and synchronize transcriptional responses according to variations in external and internal conditions. Metabolites and chemical compounds are sensed by transcription factors (TFs), which direct the corresponding specific transcriptional responses. We propose a classification of the currently known TFs of Escherichia coli based on whether they respond to metabolites incorporated from the exterior, to internally produced compounds, or to both. When analyzing the mutual interactions of TFs, the dominant role of internal signal sensing becomes apparent, greatly due to the role of global regulators of transcription. This work encompasses metabolite-TF interactions, bridging the gap between the metabolic and regulatory networks, thus advancing towards an integrated network model for the understanding of cellular behavior.
Collapse
Affiliation(s)
- Agustino Martínez-Antonio
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62100, México.
| | | | | | | |
Collapse
|
32
|
Rajoka MI, Yasmeen A. Improved productivity of β-fructofuranosidase by a derepressed mutant of Aspergillus niger from conventional and non-conventional substrates. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-1995-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Regulation of synthesis of endo-xylanase and β-xylosidase in Cellulomonas flavigena: a kinetic study. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-2396-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Görke B, Reinhardt J, Rak B. Activity of Lac repressor anchored to the Escherichia coli inner membrane. Nucleic Acids Res 2005; 33:2504-11. [PMID: 15867195 PMCID: PMC1088070 DOI: 10.1093/nar/gki549] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transient inactivation of gene regulatory proteins by their sequestration to the cytoplasmic membrane in response to cognate signals is an increasingly recognized mechanism of gene regulation in bacteria. It remained to be shown, however, whether tethering to the membrane per se could be responsible for inactivation, i.e. whether such relocation leads to a spatial separation from the chromosome that results in inactivity or whether other mechanisms are involved. We, therefore, investigated the activity of Lac repressor artificially attached to the Escherichia coli cytoplasmic membrane. We demonstrate that this chimeric protein perfectly represses transcription initiated at the tac operator–promoter present on a plasmid and even in the chromosome. Moreover, this repression is inducible as normal. The data suggest that proteins localized to the inner face of the cytoplasmic membrane in principle have unrestricted access to the chromosome. Thus sequestration to the membrane in terms of physical separation from the chromosome cannot account alone for the inactivation of regulatory proteins. Other mechanisms, like induction of a conformational change or masking of binding domains are required additionally.
Collapse
Affiliation(s)
| | | | - Bodo Rak
- To whom correspondence should be addressed. Tel: +49 761 203 2729; Fax: +49 761 203 2769;
| |
Collapse
|
35
|
Amster-Choder O. The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 2005; 8:127-34. [PMID: 15802242 DOI: 10.1016/j.mib.2005.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bgl system represents a family of sensory systems composed of membrane-bound sugar-sensors and transcriptional antiterminators, which regulate expression of genes involved in sugar utilization in response to the presence of the corresponding sugar in the growth medium. The BglF sensor catalyzes different activities depending on its stimulation state: in its non-stimulated state, it phosphorylates the BglG transcriptional regulator, thus inactivating it; in the presence of the stimulating sugar, it transports the sugar and phosphorylates it and also activates BglG by dephosphorylation, leading to bgl operon expression. The sugar stimulates BglF by inducing a change in its membrane topology. BglG exists in several conformations: a dimer, which is active, and compact and non-compact monomers, which are inactive. BglF modulates the transition of BglG from one conformation to another, depending on sugar availability. The two Bgl proteins form a pre-complex at the membrane that dissociates upon stimulation, enabling BglG to exert its effect on transcription.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|