1
|
Hallgren J, Koonce K, Felletti M, Mortier J, Turco E, Jonas K. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus. PLoS Genet 2023; 19:e1010882. [PMID: 38011258 PMCID: PMC10723716 DOI: 10.1371/journal.pgen.1010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Upon nutrient depletion, bacteria stop proliferating and undergo physiological and morphological changes to ensure their survival. Yet, how these processes are coordinated in response to distinct starvation conditions is poorly understood. Here we compare the cellular responses of Caulobacter crescentus to carbon (C), nitrogen (N) and phosphorus (P) starvation conditions. We find that DNA replication initiation and abundance of the replication initiator DnaA are, under all three starvation conditions, regulated by a common mechanism involving the inhibition of DnaA translation. By contrast, cell differentiation from a motile swarmer cell to a sessile stalked cell is regulated differently under the three starvation conditions. During C and N starvation, production of the signaling molecules (p)ppGpp is required to arrest cell development in the motile swarmer stage. By contrast, our data suggest that low (p)ppGpp levels under P starvation allow P-starved swarmer cells to differentiate into sessile stalked cells. Further, we show that limited DnaA availability, and consequently absence of DNA replication initiation, is the main reason that prevents P-starved stalked cells from completing the cell cycle. Together, our findings demonstrate that C. crescentus decouples cell differentiation from DNA replication initiation under certain starvation conditions, two otherwise intimately coupled processes. We hypothesize that arresting the developmental program either as motile swarmer cells or as sessile stalked cells improves the chances of survival of C. crescentus during the different starvation conditions.
Collapse
Affiliation(s)
- Joel Hallgren
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kira Koonce
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michele Felletti
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Julien Mortier
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eloisa Turco
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Caccamo PD, Jacq M, VanNieuwenhze MS, Brun YV. A Division of Labor in the Recruitment and Topological Organization of a Bacterial Morphogenic Complex. Curr Biol 2020; 30:3908-3922.e4. [PMID: 32795444 DOI: 10.1016/j.cub.2020.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Bacteria come in an array of shapes and sizes, but the mechanisms underlying diverse morphologies are poorly understood. The peptidoglycan (PG) cell wall is the primary determinant of cell shape. At the molecular level, morphological variation often results from the regulation of enzymes involved in cell elongation and division. These enzymes are spatially controlled by cytoskeletal scaffolding proteins, which both recruit and organize the PG synthesis complex. How then do cells define alternative morphogenic processes that are distinct from cell elongation and division? To address this, we have turned to the specific morphotype of Alphaproteobacterial stalks. Stalk synthesis is a specialized form of zonal growth, which requires PG synthesis in a spatially constrained zone to extend a thin cylindrical projection of the cell envelope. The morphogen SpmX defines the site of stalk PG synthesis, but SpmX is a PG hydrolase. How then does a non-cytoskeletal protein, SpmX, define and constrain PG synthesis to form stalks? Here, we report that SpmX and the bactofilin BacA act in concert to regulate stalk synthesis in Asticcacaulis biprosthecum. We show that SpmX recruits BacA to the site of stalk synthesis. BacA then serves as a stalk-specific topological organizer for PG synthesis activity, including its recruiter SpmX, at the base of the stalk. In the absence of BacA, cells produce "pseudostalks" that are the result of unconstrained PG synthesis. Therefore, the protein responsible for recruitment of a morphogenic PG remodeling complex, SpmX, is distinct from the protein that topologically organizes the complex, BacA.
Collapse
Affiliation(s)
- Paul D Caccamo
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Maxime Jacq
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Drive, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centreville, Montréal, Canada.
| |
Collapse
|
3
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Subramanian K, Tyson JJ. Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus. Results Probl Cell Differ 2017; 61:23-48. [PMID: 28409299 DOI: 10.1007/978-3-319-53150-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spatial localization of proteins within the cytoplasm of bacteria is an underappreciated but critical aspect of cell cycle regulation for many prokaryotes. In Caulobacter crescentus-a model organism for the study of asymmetric cell reproduction in prokaryotes-heterogeneous localization of proteins has been identified as the underlying cause of asymmetry in cell morphology, DNA replication, and cell division. However, significant questions remain. Firstly, the mechanisms by which proteins localize in the organelle-free prokaryotic cytoplasm remain obscure. Furthermore, how variations in the spatial and temporal dynamics of cell fate determinants regulate signaling pathways and orchestrate the complex programs of asymmetric cell division and differentiation are subjects of ongoing research. In this chapter, we review current efforts in investigating these two questions. We describe how mathematical models of spatiotemporal protein dynamics are being used to generate and test competing hypotheses and provide complementary insight about the control mechanisms that regulate asymmetry in protein localization and cell division.
Collapse
Affiliation(s)
- Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
6
|
Ontiveros-Valencia A, Penton CR, Krajmalnik-Brown R, Rittmann BE. Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm. Biotechnol Bioeng 2016; 113:1736-44. [DOI: 10.1002/bit.25945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Aura Ontiveros-Valencia
- Swette Center for Environmental Biotechnology; Biodesign Institute, Arizona State University; 1001 South McAllister Ave. Tempe Arizona 85287-5701
| | | | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology; Biodesign Institute, Arizona State University; 1001 South McAllister Ave. Tempe Arizona 85287-5701
- School of Sustainable Engineering and the Built Environment; Arizona State University; Tempe Arizona
| | - Bruce E. Rittmann
- Swette Center for Environmental Biotechnology; Biodesign Institute, Arizona State University; 1001 South McAllister Ave. Tempe Arizona 85287-5701
- School of Sustainable Engineering and the Built Environment; Arizona State University; Tempe Arizona
| |
Collapse
|
7
|
Gao Y, Neubauer M, Yang A, Johnson N, Morse M, Li G, Tang JX. Altered motility of Caulobacter Crescentus in viscous and viscoelastic media. BMC Microbiol 2014; 14:322. [PMID: 25539737 PMCID: PMC4302598 DOI: 10.1186/s12866-014-0322-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/11/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Motility of flagellated bacteria depends crucially on their organelles such as flagella and pili, as well as physical properties of the external medium, such as viscosity and matrix elasticity. We studied the motility of wild-type and two mutant strains of Caulobacter crescentus swarmer cells in two different types of media: a viscous and hyperosmotic glycerol-growth medium mixture and a viscoelastic growth medium, containing polyethylene glycol or polyethylene oxide of different defined sizes. RESULTS For all three strains in the medium containing glycerol, we found linear drops in percentage of motile cells and decreases in speed of those that remained motile to be inversely proportional to viscosity. The majority of immobilized cells lost viability, evidenced by their membrane leakage. In the viscoelastic media, we found less loss of motility and attenuated decrease of swimming speed at shear viscosity values comparable to the viscous medium. In both types of media, we found more severe loss in percentage of motile cells of wild-type than the mutants without pili, indicating that the interference of pili with flagellated motility is aggravated by increased viscosity. However, we found no difference in swimming speed among all three strains under all test conditions for the cells that remained motile. Finally, the viscoelastic medium caused no significant change in intervals between flagellar motor switches unless the motor stalled. CONCLUSION Hyperosmotic effect causes loss of motility and cell death. Addition of polymers into the cell medium also causes loss of motility due to increased shear viscosity, but the majority of immobilized bacteria remain viable. Both viscous and viscoelastic media alter the motility of flagellated bacteria without affecting the internal regulation of their motor switching behavior.
Collapse
Affiliation(s)
- Yukun Gao
- Physics Department, Brown University, Providence, RI, 02192, USA.
| | | | - Alexander Yang
- Physics Department, Brown University, Providence, RI, 02192, USA.
| | - Nathan Johnson
- Physics Department, Brown University, Providence, RI, 02192, USA.
| | - Michael Morse
- Physics Department, Brown University, Providence, RI, 02192, USA.
| | - Guanglai Li
- Physics Department, Brown University, Providence, RI, 02192, USA.
| | - Jay X Tang
- Physics Department, Brown University, Providence, RI, 02192, USA.
| |
Collapse
|
8
|
Kopac S, Wang Z, Wiedenbeck J, Sherry J, Wu M, Cohan FM. Genomic heterogeneity and ecological speciation within one subspecies of Bacillus subtilis. Appl Environ Microbiol 2014; 80:4842-53. [PMID: 24907327 PMCID: PMC4135754 DOI: 10.1128/aem.00576-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
Closely related bacterial genomes usually differ in gene content, suggesting that nearly every strain in nature may be ecologically unique. We have tested this hypothesis by sequencing the genomes of extremely close relatives within a recognized taxon and analyzing the genomes for evidence of ecological distinctness. We compared the genomes of four Death Valley isolates plus the laboratory strain W23, all previously classified as Bacillus subtilis subsp. spizizenii and hypothesized through multilocus analysis to be members of the same ecotype (an ecologically homogeneous population), named putative ecotype 15 (PE15). These strains showed a history of positive selection on amino acid sequences in 38 genes. Each of the strains was under a different regimen of positive selection, suggesting that each strain is ecologically unique and represents a distinct ecological speciation event. The rate of speciation appears to be much faster than can be resolved with multilocus sequencing. Each PE15 strain contained unique genes known to confer a function for bacteria. Remarkably, no unique gene conferred a metabolic system or subsystem function that was not already present in all the PE15 strains sampled. Thus, the origin of ecotypes within this clade shows no evidence of qualitative divergence in the set of resources utilized. Ecotype formation within this clade is consistent with the nanoniche model of bacterial speciation, in which ecotypes use the same set of resources but in different proportions, and genetic cohesion extends beyond a single ecotype to the set of ecotypes utilizing the same resources.
Collapse
Affiliation(s)
- Sarah Kopac
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jane Wiedenbeck
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Jessica Sherry
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
9
|
A novel peptidoglycan binding protein crucial for PBP1A-mediated cell wall biogenesis in Vibrio cholerae. PLoS Genet 2014; 10:e1004433. [PMID: 24945690 PMCID: PMC4063736 DOI: 10.1371/journal.pgen.1004433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/25/2014] [Indexed: 02/02/2023] Open
Abstract
The bacterial cell wall, which is comprised of a mesh of polysaccharide strands crosslinked via peptide bridges (peptidoglycan, PG), is critical for maintenance of cell shape and survival. PG assembly is mediated by a variety of Penicillin Binding Proteins (PBP) whose fundamental activities have been characterized in great detail; however, there is limited knowledge of the factors that modulate their activities in different environments or growth phases. In Vibrio cholerae, the cause of cholera, PG synthesis during the transition into stationary phase is primarily mediated by the bifunctional enzyme PBP1A. Here, we screened an ordered V. cholerae transposon library for mutants that are sensitive to growth inhibition by non-canonical D-amino acids (DAA), which prevent growth and maintenance of cell shape in PBP1A-deficient V. cholerae. In addition to PBP1A and its lipoprotein activator LpoA, we found that CsiV, a small periplasmic protein with no previously described function, is essential for growth in the presence of DAA. Deletion of csiV, like deletion of lpoA or the PBP1A-encoding gene mrcA, causes cells to lose their rod shape in the presence of DAA or the beta-lactam antibiotic cefsulodin, and all three mutations are synthetically lethal with deletion of mrcB, which encodes PBP1B, V. cholerae's second key bifunctional PBP. CsiV interacts with LpoA and PG but apparently not with PBP1A, supporting the hypothesis that CsiV promotes LpoA's role as an activator of PBP1A, and thereby modulates V. cholerae PG biogenesis. Finally, the requirement for CsiV in PBP1A-mediated growth of V. cholerae can be overcome either by augmenting PG synthesis or by reducing PG degradation, thereby highlighting the importance of balancing these two processes for bacterial survival.
Collapse
|
10
|
Van der Henst C, de Barsy M, Zorreguieta A, Letesson JJ, De Bolle X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15:998-1004. [PMID: 24141086 DOI: 10.1016/j.micinf.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Brucella pathogens are responsible for brucellosis, a worldwide zoonosis. They are facultative intracellular pathogens characterized by their asymmetric division and their unipolar growth. This growth modality generates poles with specialized functions (through polar recruitment of polar adhesins or of cell cycle regulators) and progeny cells with potentially different fates.
Collapse
Affiliation(s)
- Charles Van der Henst
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Donovan C, Sieger B, Krämer R, Bramkamp M. A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 2012; 84:105-16. [DOI: 10.1111/j.1365-2958.2012.08011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Radhakrishnan SK, Viollier P. Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends Cell Biol 2012; 22:14-21. [DOI: 10.1016/j.tcb.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
13
|
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 2011; 35:957-76. [PMID: 21711367 DOI: 10.1111/j.1574-6976.2011.00292.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.
Collapse
Affiliation(s)
- Jane Wiedenbeck
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
14
|
Pole age affects cell size and the timing of cell division in Methylobacterium extorquens AM1. J Bacteriol 2011; 193:5216-21. [PMID: 21784923 DOI: 10.1128/jb.00329-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of recent experiments at the single-cell level have shown that genetically identical bacteria that live in homogeneous environments often show a substantial degree of phenotypic variation between cells. Often, this variation is attributed to stochastic aspects of biology-the fact that many biological processes involve small numbers of molecules and are thus inherently variable. However, not all variation between cells needs to be stochastic in nature; one deterministic process that could be important for cell variability in some bacterial species is the age of the cell poles. Working with the alphaproteobacterium Methylobacterium extorquens, we monitored individuals in clonally growing populations over several divisions and determined the pole age, cell size, and interdivision intervals of individual cells. We observed the high levels of variation in cell size and the timing of cell division that have been reported before. A substantial fraction of this variation could be explained by each cell's pole age and the pole age of its mother: cell size increased with increasing pole age, and the interval between cell divisions decreased. A theoretical model predicted that populations governed by such processes will quickly reach a stable distribution of different age and size classes. These results show that the pole age distribution in bacterial populations can contribute substantially to cellular individuality. In addition, they raise questions about functional differences between cells of different ages and the coupling of cell division to cell size.
Collapse
|
15
|
Zalatan F, Black P. Characterization of long-chain fatty acid uptake in Caulobacter crescentus. Arch Microbiol 2011; 193:479-87. [PMID: 21442318 DOI: 10.1007/s00203-011-0694-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/09/2011] [Indexed: 11/26/2022]
Abstract
Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent V(max) and K(m) values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.
Collapse
Affiliation(s)
- Fred Zalatan
- Department of Biology, State University of New York College at Oneonta, Oneonta, 13820, USA.
| | | |
Collapse
|
16
|
Spatial regulation in Caulobacter crescentus. Curr Opin Microbiol 2009; 12:715-21. [DOI: 10.1016/j.mib.2009.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 09/20/2009] [Indexed: 01/04/2023]
|
17
|
Buelow DR, Raivio TL. Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol Microbiol 2009; 75:547-66. [PMID: 19943903 DOI: 10.1111/j.1365-2958.2009.06982.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signal transduction (TCST) is the most prevalent mechanism employed by microbes to sense and respond to environmental changes. It is characterized by the signal-induced transfer of phosphate from a sensor histidine kinase (HK) to a response regulator (RR), resulting in a cellular response. An emerging theme in the field of TCST signalling is the discovery of auxiliary factors, distinct from the HK and RR, which are capable of influencing phosphotransfer. One group of TCST auxiliary proteins accomplishes this task by acting on HKs. Auxiliary regulators of HKs are widespread and have been identified in all cellular compartments, where they can influence HK activity through interactions with the sensing, transmembrane or enzymatic domains of the HK. The effects of an auxiliary regulator are controlled by its regulated expression, modification and/or through ligand binding. Ultimately, auxiliary regulators can connect a given TCST system to other regulatory networks in the cell or result in regulation of the TCST system in response to an expanded range of stimuli. The studies highlighted in this review draw attention to an emerging view of bacterial TCST systems as core signalling units upon which auxiliary factors act.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
18
|
Xu Q, Carlton D, Miller MD, Elsliger MA, Krishna SS, Abdubek P, Astakhova T, Burra P, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Sefcovic N, Trame C, Trout CV, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. J Mol Biol 2009; 390:686-98. [PMID: 19450606 DOI: 10.1016/j.jmb.2009.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
Cell-cycle-regulated stalk biogenesis in Caulobacter crescentus is controlled by a multistep phosphorelay system consisting of the hybrid histidine kinase ShkA, the histidine phosphotransfer (HPt) protein ShpA, and the response regulator TacA. ShpA shuttles phosphoryl groups between ShkA and TacA. When phosphorylated, TacA triggers a downstream transcription cascade for stalk synthesis in an RpoN-dependent manner. The crystal structure of ShpA was determined to 1.52 A resolution. ShpA belongs to a family of monomeric HPt proteins that feature a highly conserved four-helix bundle. The phosphorylatable histidine His56 is located on the surface of the helix bundle and is fully solvent exposed. One end of the four-helix bundle in ShpA is shorter compared with other characterized HPt proteins, whereas the face that potentially interacts with the response regulators is structurally conserved. Similarities of the interaction surface around the phosphorylation site suggest that ShpA is likely to share a common mechanism for molecular recognition and phosphotransfer with yeast phosphotransfer protein YPD1 despite their low overall sequence similarity.
Collapse
|
19
|
Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 2008; 134:956-68. [PMID: 18805089 DOI: 10.1016/j.cell.2008.07.016] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 04/18/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
20
|
Polar explorations Recent insights into the polarity of bacterial proteins. Curr Opin Microbiol 2007; 10:617-23. [PMID: 18006364 DOI: 10.1016/j.mib.2007.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022]
Abstract
It is now well established in the microbiology community that the spatial organization of bacterial cells is quite complex with proteins and protein complexes localized to specific subcellular regions. Unresolved for the most part, however, are the mechanisms by which asymmetric proteins are localized. A variety of mechanisms are utilized to achieve polarity in bacteria. In this article, we focus on recent findings that support specific mechanisms for the establishment of polarity in rod shaped bacteria.
Collapse
|