1
|
Buracco S, Döring H, Engelbart S, Singh SP, Paschke P, Whitelaw J, Thomason PA, Paul NR, Tweedy L, Lilla S, McGarry L, Corbyn R, Claydon S, Mietkowska M, Machesky LM, Rottner K, Insall RH. Scar/WAVE drives actin protrusions independently of its VCA domain using proline-rich domains. Curr Biol 2024; 34:4436-4451.e9. [PMID: 39332399 DOI: 10.1016/j.cub.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
Cell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. Fine-tuning of this process is critical to ensure new actin filaments are formed only at specific times and in defined regions of the cell. The Scar/WAVE complex is the main catalyst of pseudopod and lamellipodium formation during cell migration. It is a pentameric complex highly conserved through eukaryotic evolution and composed of Scar/WAVE, Abi, Nap1/NCKAP1, Pir121/CYFIP, and HSPC300/Brk1. Its function is usually attributed to activation of the Arp2/3 complex through Scar/WAVE's VCA domain, while other parts of the complex are expected to mediate spatial-temporal regulation and have no direct role in actin polymerization. Here, we show in both B16-F1 mouse melanoma and Dictyostelium discoideum cells that Scar/WAVE without its VCA domain still induces the formation of morphologically normal, actin-rich protrusions, extending at comparable speeds despite a drastic reduction of Arp2/3 recruitment. However, the proline-rich regions in Scar/WAVE and Abi subunits are essential, though either is sufficient for the generation of actin protrusions in B16-F1 cells. We further demonstrate that N-WASP can compensate for the absence of Scar/WAVE's VCA domain and induce lamellipodia formation, but it still requires an intact WAVE complex, even if without its VCA domain. We conclude that the Scar/WAVE complex does more than directly activating Arp2/3, with proline-rich domains playing a central role in promoting actin protrusions. This implies a broader function for the Scar/WAVE complex, concentrating and simultaneously activating many actin-regulating proteins as a lamellipodium-producing core.
Collapse
Affiliation(s)
- Simona Buracco
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefanie Engelbart
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Peggy Paschke
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Jamie Whitelaw
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Peter A Thomason
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Luke Tweedy
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Sophie Claydon
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| | - Robert H Insall
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
2
|
Dowdell A, Paschke PI, Thomason PA, Tweedy L, Insall RH. Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis. Curr Biol 2023; 33:1704-1715.e3. [PMID: 37001521 DOI: 10.1016/j.cub.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023]
Abstract
Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.
Collapse
Affiliation(s)
- Adam Dowdell
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Peggy I Paschke
- CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | | | - Luke Tweedy
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; CRUK Beatson Institute, Switchback Road, Glasgow G63 9AE, UK.
| |
Collapse
|
3
|
Insall RH. Receptors, enzymes and self-attraction as autocrine generators and amplifiers of chemotaxis and cell steering. Curr Opin Cell Biol 2023; 81:102169. [PMID: 37075582 DOI: 10.1016/j.ceb.2023.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Cells create their own steering cues, or modify cues from their outside, for a number of reasons. These include generating optimal, legible directional information; probing their environments for information to help decide an optimal route; symmetry breaking; generating new patterns and complexity; and bringing together collectives such as neutrophil swarms. Recent advances include more mechanisms of self-steering, in particular by using cell-generated mechanical cues, and gradients of respired oxygen. An increasing number of cell types are being found to use self-steering, in particular immune cells responding to chemokines and mesodermal cells during gastrulation. Finally, receptor modification has emerged as an important limit on the range of neutrophil swarming, allowing cells to monitor other areas as well as coming together. Self-steering is thus emerging as a dominant feature of cell motility.
Collapse
Affiliation(s)
- Robert H Insall
- School of Cancer Sciences, University of Glasgow, G61 1BD, UK.
| |
Collapse
|
4
|
Zhu X, Ricci-Tam C, Hager ER, Sgro AE. Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum. PLoS One 2023; 18:e0281211. [PMID: 36862626 PMCID: PMC9980757 DOI: 10.1371/journal.pone.0281211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum, opening up new possibilities for genetic engineering in this model system.
Collapse
Affiliation(s)
- Xinwen Zhu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Emily R. Hager
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Allyson E. Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Zhu X, Hager ER, Huyan C, Sgro AE. Leveraging the model-experiment loop: Examples from cellular slime mold chemotaxis. Exp Cell Res 2022; 418:113218. [PMID: 35618013 DOI: 10.1016/j.yexcr.2022.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
Interplay between models and experimental data advances discovery and understanding in biology, particularly when models generate predictions that allow well-designed experiments to distinguish between alternative mechanisms. To illustrate how this feedback between models and experiments can lead to key insights into biological mechanisms, we explore three examples from cellular slime mold chemotaxis. These examples include studies that identified chemotaxis as the primary mechanism behind slime mold aggregation, discovered that cells likely measure chemoattractant gradients by sensing concentration differences across cell length, and tested the role of cell-associated chemoattractant degradation in shaping chemotactic fields. Although each study used a different model class appropriate to their hypotheses - qualitative, mathematical, or simulation-based - these examples all highlight the utility of modeling to formalize assumptions and generate testable predictions. A central element of this framework is the iterative use of models and experiments, specifically: matching experimental designs to the models, revising models based on mismatches with experimental data, and validating critical model assumptions and predictions with experiments. We advocate for continued use of this interplay between models and experiments to advance biological discovery.
Collapse
Affiliation(s)
- Xinwen Zhu
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Emily R Hager
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Chuqiao Huyan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Allyson E Sgro
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Insall RH, Paschke P, Tweedy L. Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends Cell Biol 2022; 32:585-596. [DOI: 10.1016/j.tcb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
7
|
Singh SP, Insall RH. Under-Agarose Chemotaxis and Migration Assays for Dictyostelium. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2438:467-482. [PMID: 35147958 DOI: 10.1007/978-1-0716-2035-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemotaxis-directional cell movement steered by chemical gradients-involved in many biological processes including embryonic morphogenesis and immune cell function. Eukaryotic cells, in response to external gradients of attractants, use conserved mechanisms to achieve chemotaxis by regulating the actin cytoskeleton at their fronts and myosin II at their rears. Dictyostelium discoideum, an amoeba that is widely used to study chemotaxis, uses chemotaxis to move up gradients of folate to identify and locate its bacterial prey. Similarly, when starved, Dictyostelium cells synthesize and secrete cyclic AMP (cAMP) while simultaneously expressing cAMP receptors. This allows them to chemotax toward their neighbors and aggregate together. The chemotactic behavior of cells can be studied using several techniques. One such, under-agarose chemotaxis, is a robust, easy, and inexpensive assay that allows direct quantification of chemotactic parameters such as speed and directionality. With the use of high-resolution imaging, for example confocal microscopy, detailed examination of the distribution of actin and membrane proteins in migrating wild type and mutant cells can be performed. In this chapter, we describe simple and optimized methods for studying folate and cAMP chemotaxis in Dictyostelium cells under agarose.
Collapse
Affiliation(s)
| | - Robert H Insall
- CRUK Beatson Institute, Glasgow, UK. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Extracellular Signalling Modulates Scar/WAVE Complex Activity through Abi Phosphorylation. Cells 2021; 10:cells10123485. [PMID: 34943993 PMCID: PMC8700165 DOI: 10.3390/cells10123485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 01/01/2023] Open
Abstract
The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.
Collapse
|
9
|
Williams RSB, Chubb JR, Insall R, King JS, Pears CJ, Thompson E, Weijer CJ. Moving the Research Forward: The Best of British Biology Using the Tractable Model System Dictyostelium discoideum. Cells 2021; 10:3036. [PMID: 34831258 PMCID: PMC8616412 DOI: 10.3390/cells10113036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
The social amoeba Dictyostelium discoideum provides an excellent model for research across a broad range of disciplines within biology. The organism diverged from the plant, yeast, fungi and animal kingdoms around 1 billion years ago but retains common aspects found in these kingdoms. Dictyostelium has a low level of genetic complexity and provides a range of molecular, cellular, biochemical and developmental biology experimental techniques, enabling multidisciplinary studies to be carried out in a wide range of areas, leading to research breakthroughs. Numerous laboratories within the United Kingdom employ Dictyostelium as their core research model. This review introduces Dictyostelium and then highlights research from several leading British research laboratories, covering their distinct areas of research, the benefits of using the model, and the breakthroughs that have arisen due to the use of Dictyostelium as a tractable model system.
Collapse
Affiliation(s)
- Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jonathan R. Chubb
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK;
| | - Robert Insall
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK;
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK;
| | - Catherine J. Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Elinor Thompson
- School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK;
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| |
Collapse
|
10
|
Rocha-Gregg B, Huttenlocher A. Signal integration in forward and reverse neutrophil migration: Fundamentals and emerging mechanisms. Curr Opin Cell Biol 2021; 72:124-130. [PMID: 34411839 DOI: 10.1016/j.ceb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Neutrophils migrate to sites of tissue damage, where they protect the host against pathogens. Often, the cost of these neutrophil defenses is collateral damage to healthy tissues. Thus, the immune system has evolved multiple mechanisms to regulate neutrophil migration. One of these mechanisms is reverse migration - the process whereby neutrophils leave the source of inflammation. In vivo, neutrophils arrive and depart the wound simultaneously - indicating that neutrophils dynamically integrate conflicting signals to engage in forward and reverse migration. This finding is seemingly at odds with the established chemoattractant hierarchy in vitro, which places wound-derived signals at the top. Here we will discuss recent work that has uncovered key players involved in retaining and dispersing neutrophils from wounds. These findings offer the opportunity to integrate established and emerging mechanisms into a holistic model for neutrophil migration in vivo.
Collapse
Affiliation(s)
- Briana Rocha-Gregg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Abstract
We theoretically show that isolated agents that locally and symmetrically consume resources and sense positive resource gradients can generate constant motion via bootstrapped resource gradients in the absence of any externally imposed gradients, and we show a realization of this motion using robots. This self-generated agent motion can be coupled with neighboring agents to act as a spontaneously broken symmetry seed for emergent collective dynamics. We also show that in a sufficiently weak externally imposed gradient, it is possible for an agent to move against an external resource gradient due to the local resource depression on the landscape created by an agent. This counter-intuitive boot-strapped motion against an external gradient is demonstrated with a simple robot system on an light-emitting diode (LED) light-board.
Collapse
|
12
|
Abstract
The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.
Collapse
Affiliation(s)
| | - Robert H Insall
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Tweedy L, Insall RH. Self-Generated Gradients Yield Exceptionally Robust Steering Cues. Front Cell Dev Biol 2020; 8:133. [PMID: 32195256 PMCID: PMC7066204 DOI: 10.3389/fcell.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
Chemotaxis is a widespread mechanism that allows migrating cells to steer to where they are needed. Attractant gradients may be imposed by external sources, or self-generated, when cells create their own steep local gradients by breaking down a prevalent, broadly distributed attractant. Here we show that chemotaxis works far more robustly toward self-generated gradients. Cells can only respond efficiently to a restricted range of attractant concentrations; if attractants are too dilute, their gradients are too shallow for cells to sense, but if they are too high, all receptors become saturated and cells cannot perceive spatial differences. Self-generated gradients are robust because cells maintain the attractant at optimal concentrations. A wave can recruit varying numbers of steered cells, and cells can take time to break down attractant before starting to migrate. Self-generated gradients can therefore operate over a greater range of attractant concentrations, larger distances, and longer times than imposed gradients. The robustness is further enhanced at low cell numbers if attractants also act as mitogens, and at high attractant concentrations if the enzymes that break down attractants are themselves induced by constant attractant levels.
Collapse
Affiliation(s)
- Luke Tweedy
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
14
|
Fort L, Batista JM, Thomason PA, Spence HJ, Whitelaw JA, Tweedy L, Greaves J, Martin KJ, Anderson KI, Brown P, Lilla S, Neilson MP, Tafelmeyer P, Zanivan S, Ismail S, Bryant DM, Tomkinson NCO, Chamberlain LH, Mastick GS, Insall RH, Machesky LM. Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nat Cell Biol 2018; 20:1159-1171. [PMID: 30250061 PMCID: PMC6863750 DOI: 10.1038/s41556-018-0198-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/20/2018] [Indexed: 11/09/2022]
Abstract
Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module. CYRI-depleted cells have broad lamellipodia enriched in Scar/WAVE, but reduced protrusion-retraction dynamics. Pseudopods induced by optogenetic Rac1 activation in CYRI-depleted cells are larger and longer lived. Conversely, CYRI overexpression suppresses recruitment of active Scar/WAVE to the cell edge, resulting in short-lived, unproductive protrusions. CYRI thus focuses protrusion signals and regulates pseudopod complexity by inhibiting Scar/WAVE-induced actin polymerization. It thus behaves like a 'local inhibitor' as predicted in widely accepted mathematical models, but not previously identified in cells. CYRI therefore regulates chemotaxis, cell migration and epithelial polarization by controlling the polarity and plasticity of protrusions.
Collapse
Affiliation(s)
- Loic Fort
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - José Miguel Batista
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | | | | | | | | | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Kurt I Anderson
- CRUK Beatson Institute, Glasgow, UK
- Francis Crick Institute, London, UK
| | | | | | | | | | | | - Shehab Ismail
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - David M Bryant
- CRUK Beatson Institute, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Robert H Insall
- CRUK Beatson Institute, Glasgow, UK.
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.
| | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK.
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.
| |
Collapse
|
15
|
Aufderheide KJ, Janetopoulos C. Migration of Dictyostelium discoideum to the Chemoattractant Folic Acid. Methods Mol Biol 2017; 1407:25-39. [PMID: 27271892 DOI: 10.1007/978-1-4939-3480-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dictyostelium discoideum can be grown axenically in a cultured media or in the presence of a natural food source, such as the bacterium Klebsiella aerogenes (KA). Here we describe the advantages and methods for growing D. discoideum on a bacterial lawn for several processes studied using this model system. When grown on a bacterial lawn, D. discoideum show positive chemotaxis towards folic acid (FA). While these vegetative cells are highly unpolarized, it has been shown that the signaling and cytoskeletal molecules regulating the directed migration of these cells are homologous to those seen in the motility of polarized cells in response to the chemoattractant cyclic adenosine monophosphate (cAMP). Growing D. discoideum on KA stimulates chemotactic responsiveness to FA. A major advantage of performing FA-mediated chemotaxis is that it does not require expression of the cAMP developmental program and therefore has the potential to identify mutants that are purely unresponsive to chemoattractant gradients. The cAMP-mediated chemotaxis can appear to fail when cells are developmentally delayed or do not up-regulate genes needed for cAMP-mediated migration. In addition to providing robust chemotaxis to FA, cells grown on bacterial lawns are highly resistant to light damage during fluorescence microscopy. This resistance to light damage could be exploited to better understand other biological processes such as phagocytosis or cytokinesis. The cell cycle is also shortened when cells are grown in the presence of KA, so the chances of seeing a mitotic event increases.
Collapse
Affiliation(s)
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Susanto O, Koh YWH, Morrice N, Tumanov S, Thomason PA, Nielson M, Tweedy L, Muinonen-Martin AJ, Kamphorst JJ, Mackay GM, Insall RH. LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. J Cell Sci 2017; 130:3455-3466. [PMID: 28871044 PMCID: PMC5665449 DOI: 10.1242/jcs.207514] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Olivia Susanto
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Yvette W H Koh
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Nick Morrice
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sergey Tumanov
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Peter A Thomason
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Matthew Nielson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Luke Tweedy
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Andrew J Muinonen-Martin
- York Teaching Hospital NHS Foundation Trust, The York Hospital, York YO31 8HE, UK
- Leeds Cancer Centre - Melanoma Institute, Bexley Wing, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jurre J Kamphorst
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Gillian M Mackay
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Robert H Insall
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
17
|
Tolosa EJ, Fernández-Zapico ME, Battiato NL, Rovasio RA. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure. Eur J Cell Biol 2016; 95:136-52. [DOI: 10.1016/j.ejcb.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/23/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
|
18
|
O'Day DH, Huber RJ. Matricellular signal transduction involving calmodulin in the social amoebozoan dictyostelium. Genes (Basel) 2013; 4:33-45. [PMID: 24705101 PMCID: PMC3899956 DOI: 10.3390/genes4010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022] Open
Abstract
The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM) sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL) repeat-containing, calmodulin (CaM)-binding protein (CaMBP) CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa) releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa) in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM) has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| | - Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Brzostowski JA, Fey P, Yan J, Isik N, Jin T. The Elmo family forms an ancient group of actin-regulating proteins. Commun Integr Biol 2013; 2:337-40. [PMID: 19721884 DOI: 10.4161/cib.2.4.8549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/11/2023] Open
Abstract
The Elmo protein family members are important mediators of small G protein activity, regulating actin-mediated processes such as chemotaxis and engulfment. Until recently,1 Elmo function has not been explored in professional phagocytes such as Dictyostelium discoideum. We discuss the significance of this family with respect to pathways that regulate Rac signaling, we present a comparison of Elmo proteins between representative taxa, and discuss our findings on ElmoA, one of six Elmo proteins found in D. discoideum.
Collapse
Affiliation(s)
- Joseph A Brzostowski
- Laboratory of Immunogenetics Imaging Facility; National Institutes of Health; Rockville, MD USA
| | | | | | | | | |
Collapse
|
20
|
Huber RJ, O'Day DH. A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum. Cell Mol Life Sci 2012; 69:3989-97. [PMID: 22782112 PMCID: PMC11115030 DOI: 10.1007/s00018-012-1068-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/13/2022]
Abstract
Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada,
| | | |
Collapse
|
21
|
Srinivasan K, Wright GA, Hames N, Housman M, Roberts A, Aufderheide KJ, Janetopoulos C. Delineating the core regulatory elements crucial for directed cell migration by examining folic-acid-mediated responses. J Cell Sci 2012; 126:221-33. [PMID: 23132928 DOI: 10.1242/jcs.113415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dictyostelium discoideum shows chemotaxis towards folic acid (FA) throughout vegetative growth, and towards cAMP during development. We determined the spatiotemporal localization of cytoskeletal and signaling molecules and investigated the FA-mediated responses in a number of signaling mutants to further our understanding of the core regulatory elements that are crucial for cell migration. Proteins enriched in the pseudopods during chemotaxis also relocalize transiently to the plasma membrane during uniform FA stimulation. In contrast, proteins that are absent from the pseudopods during migration redistribute transiently from the PM to the cytosol when cells are globally stimulated with FA. These chemotactic responses to FA were also examined in cells lacking the GTPases Ras C and G. Although Ras and phosphoinositide 3-kinase activity were significantly decreased in Ras G and Ras C/G nulls, these mutants still migrated towards FA, indicating that other pathways must support FA-mediated chemotaxis. We also examined the spatial movements of PTEN in response to uniform FA and cAMP stimulation in phospholipase C (PLC) null cells. The lack of PLC strongly influences the localization of PTEN in response to FA, but not cAMP. In addition, we compared the gradient-sensing behavior of polarized cells migrating towards cAMP to that of unpolarized cells migrating towards FA. The majority of polarized cells make U-turns when the cAMP gradient is switched from the front of the cell to the rear. Conversely, unpolarized cells immediately extend pseudopods towards the new FA source. We also observed that plasma membrane phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] levels oscillate in unpolarized cells treated with Latrunculin-A, whereas polarized cells had stable plasma membrane PtdIns(3,4,5)P3 responses toward the chemoattractant gradient source. Results were similar for cells that were starved for 4 hours, with a mixture of polarized and unpolarized cells responding to cAMP. Taken together, these findings suggest that similar components control gradient sensing during FA- and cAMP-mediated motility, but the response of polarized cells is more stable, which ultimately helps maintain their directionality.
Collapse
|
22
|
Marée AFM, Grieneisen VA, Edelstein-Keshet L. How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput Biol 2012; 8:e1002402. [PMID: 22396633 PMCID: PMC3291540 DOI: 10.1371/journal.pcbi.1002402] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 01/07/2012] [Indexed: 12/03/2022] Open
Abstract
To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) , and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell “fronts”. This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model. Single cells, such as amoeba and white blood cells, change shape and move in response to environmental stimuli. Their behaviour is a consequence of the intracellular properties balanced by external forces. The internal regulation is modulated by several proteins that interact with one another and with membrane lipids. We examine, through in silico experiments using a computational model of a moving cell, the interactions of an important class of such proteins (Rho GTPases) and lipids (phosphoinositides, PIs), their spatial redistribution, and how they affect and are affected by cell shape. Certain GTPases promote the assembly of the actin cytoskeleton. This then leads to the formation of a cell protrusion, the leading edge. The feedback between PIs and GTPases facilitates global communication across the cell, ensuring that multiple, complex, or rapidly changing stimuli can be resolved into a single decision for positioning the leading edge. Interestingly, the cell shape itself affects the intracellular biochemistry, resulting from interactions between the curvature of the chemical fronts and the cell edge. Cells with static shapes consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes. This potential to respond more rapidly to external stimuli depends on the degree of cellular shape deformation.
Collapse
Affiliation(s)
- Athanasius F M Marée
- Computational & Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | | | | |
Collapse
|
23
|
Agarwala EK, Chiel HJ, Thomas PJ. Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging. J Theor Biol 2012; 304:235-72. [PMID: 22381540 DOI: 10.1016/j.jtbi.2012.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 12/30/2022]
Abstract
Efficient coding, redundancy reduction, and other information theoretic optimization principles have successfully explained the organization of many biological phenomena, from the physiology of sensory receptive fields to the variability of certain DNA sequence ensembles. Here we examine the hypothesis that behavioral strategies that are optimal for survival must necessarily involve efficient information processing, and ask whether there can be circumstances in which deliberately sacrificing some information can lead to higher utility? To this end, we present an analytically tractable model for a particular instance of a perception-action loop: a creature searching for a randomly moving food source confined to a 1D ring world. The model incorporates the statistical structure of the creature's world, the effects of the creature's actions on that structure, and the creature's strategic decision process. The underlying model takes the form of a Markov process on an infinite dimensional state space. To analyze it we construct an exact coarse graining that reduces the model to a Markov process on a finite number of "information states". This mathematical technique allows us to make quantitative comparisons between the performance of an information-theoretically optimal strategy with other candidate search strategies on a food gathering task. We find that 1. Information optimal search does not necessarily optimize utility (expected food gain). 2. The rank ordering of search strategies by information performance does not predict their ordering by expected food obtained. 3. The relative advantage of different strategies depends on the statistical structure of the environment, in particular the variability of motion of the source. We conclude that there is no simple relationship between information and utility. Even in the absence of information processing costs or bandwidth constraints, behavioral optimality does not imply information efficiency, nor is there a simple tradeoff between the two objectives of gaining information about a food source versus obtaining the food itself. For a wide range of values of the food source's movement parameter, the strategy of collecting the most information possible about the unknown source location carries an ineliminable structural cost, leading to a situation in which a foraging creature could actually choose to be less well-informed while simultaneously being, on average, better fed.
Collapse
Affiliation(s)
- Edward K Agarwala
- Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
24
|
Hecht I, Skoge ML, Charest PG, Ben-Jacob E, Firtel RA, Loomis WF, Levine H, Rappel WJ. Activated membrane patches guide chemotactic cell motility. PLoS Comput Biol 2011; 7:e1002044. [PMID: 21738453 PMCID: PMC3127810 DOI: 10.1371/journal.pcbi.1002044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/23/2011] [Indexed: 12/31/2022] Open
Abstract
Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. Different types of cells are able to directionally migrate, responding to spatially-varying environmental cues. To do so, the cell needs to sense its environment, decide on the correct direction, and finally implement the needed mechanical changes in order to actually move. In this work we study the relation between the sensing-signaling system and the mechanical motion. We first show that membrane protrusions which drive the overall translocation occur exactly at the same locations at which membrane-bound signal-transduction effectors accumulate. These high concentration areas, also termed “patches”, exhibit interesting dynamics of disappearing and reappearing. Based on these findings, we develop a mathematical-computational model, in which membrane protrusions are driven by these membrane “patches”. These protrusions are then coupled to other cellular forces and the overall model predicts motion and its relationship to shape changes. Using our approach, we show that several observed features of cellular motility, for example the splitting of the cell tip, can be explained by the upstream signaling dynamics.
Collapse
Affiliation(s)
- Inbal Hecht
- Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jowhar D, Wright G, Samson PC, Wikswo JP, Janetopoulos C. Open access microfluidic device for the study of cell migration during chemotaxis. Integr Biol (Camb) 2010; 2:648-58. [PMID: 20949221 PMCID: PMC3806978 DOI: 10.1039/c0ib00110d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells sense and interpret chemical gradients, and respond by localized responses that lead to directed migration. An open microfluidic device (OMD) was developed to provide quantitative information on both the gradient and morphological changes that occurred as cells crawled through various microfabricated channels. This device overcame problems that many current devices have been plagued with, such as complicated cell loading, media evaporation and channel blockage by air bubbles. We used a micropipette to set up stable gradients formed by passive diffusion and thus avoided confounding cellular responses produced by shear forces. Two versions of the OMD are reported here: one device that has channels with widths of 6, 8, 10 and 12 μm, while the other has two large 100 μm channels to minimize cellular interaction with lateral walls. These experiments compared the migration rates and qualitative behavior of Dictyostelium discoideum cells responding to measurable cAMP and folic acid gradients in small and large channels. We report on the influence that polarity has on a cell's ability to migrate when confined in a channel. Polarized cells that migrated to cAMP were significantly faster than the unpolarized cells that crawled toward folic acid. Unpolarized cells in wide channels often strayed off course, yet migrated faster than unpolarized cells in confined channels. Cells in channels farthest from the micropipette migrated through the channels at rates similar to cells in channels with higher concentrations, suggesting that cell speed was independent of mean concentration. Lastly, it was found that the polarized cells could easily change migration direction even when only the leading edge of the cell was exposed to a lateral gradient.
Collapse
Affiliation(s)
- Dawit Jowhar
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
| | - Gus Wright
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
| | - Philip C. Samson
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
| | - John P. Wikswo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Christopher Janetopoulos
- Department of Biological Sciences, Vanderbilt University, VU Station B #351634, Nashville, TN 37235., Fax: +1 615-343-6707; Tel: +1 615-936-8907
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
26
|
Irimia D, Balázsi G, Agrawal N, Toner M. Adaptive-control model for neutrophil orientation in the direction of chemical gradients. Biophys J 2009; 96:3897-916. [PMID: 19450463 DOI: 10.1016/j.bpj.2008.12.3967] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 12/09/2008] [Accepted: 12/23/2008] [Indexed: 10/20/2022] Open
Abstract
Neutrophils have a remarkable ability to detect the direction of chemoattractant gradients and move directionally in response to bacterial infections and tissue injuries. For their role in health and disease, neutrophils have been extensively studied, and many of the molecules involved in the signaling mechanisms of gradient detection and chemotaxis have been identified. However, the cellular-scale mechanisms of gradient sensing and directional neutrophil migration have been more elusive, and existent models provide only limited insight into these processes. Here, we propose a what we believe is a novel adaptive-control model for the initiation of cell polarization in response to gradients. In this model, the neutrophils first sample the environment by extending protrusions in random directions and subsequently adapt their sensitivity depending on localized, temporal changes in stimulation levels. Our results suggest that microtubules may play a critical role in integrating all the sensing events from the cellular periphery through their redistribution inside the neutrophils, and may also be involved in modulating local signaling. An unexpected finding was that model neutrophils exhibit significant randomness in timing and directionality of activation, comparable to our experimental observations in microfluidic devices. Moreover, their responses are robust against alterations of the rate and amplitude of the signaling reactions, and for a broad range in chemoattractant concentrations and spatial gradients.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
27
|
Asano Y, Nagasaki A, Uyeda TQP. Correlated waves of actin filaments and PIP3 in Dictyostelium cells. ACTA ACUST UNITED AC 2009; 65:923-34. [PMID: 18814278 DOI: 10.1002/cm.20314] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity.
Collapse
Affiliation(s)
- Yukako Asano
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
28
|
Garcia GL, Rericha EC, Heger CD, Goldsmith PK, Parent CA. The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation. Mol Biol Cell 2009; 20:3295-304. [PMID: 19477920 DOI: 10.1091/mbc.e09-03-0223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.
Collapse
Affiliation(s)
- Gene L Garcia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Emerging findings from studies of phospholipase D in model organisms (and a short update on phosphatidic acid effectors). Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:889-97. [PMID: 19345277 DOI: 10.1016/j.bbalip.2009.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 02/05/2023]
Abstract
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms. In this review we will summarize what is known about phospholipase D in several model organisms, including C. elegans, D. discoideum, D. rerio and D. melanogaster. In the cases where knockouts are available (C. elegans, Dictyostelium and Drosophila) the PLD gene(s) appear not to be essential for viability, but several studies are beginning to identify pathways where this activity has a role. Given that the proteins in model organisms are very similar to their mammalian counterparts, we expect that future studies in model organisms will complement and extend ongoing work in mammalian settings. At the end of this review we will also provide a short update on phosphatidic acid targets, a topic last reviewed in 2006.
Collapse
|
30
|
Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 2009; 23:93-104. [PMID: 19136627 DOI: 10.1101/gad.502409] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Second messengers control a wide range of important cellular functions in eukaryotes and prokaryotes. Here we show that cyclic di-GMP, a global bacterial second messenger, promotes cell cycle progression in Caulobacter crescentus by mediating the specific degradation of the replication initiation inhibitor CtrA. During the G1-to-S-phase transition, both CtrA and its cognate protease ClpXP dynamically localize to the old cell pole, where CtrA is rapidly degraded. Sequestration of CtrA to the cell pole depends on PopA, a newly identified cyclic di-GMP effector protein. PopA itself localizes to the cell pole and directs CtrA to this subcellular site via the direct interaction with a mediator protein, RcdA. We present evidence that c-di-GMP regulates CtrA degradation during the cell cycle by controlling the dynamic sequestration of the PopA recruitment factor to the cell pole. Furthermore, we show that cell cycle timing of CtrA degradation relies on converging pathways responsible for substrate and protease localization to the old cell pole. This is the first report that links cyclic di-GMP to protein dynamics and cell cycle control in bacteria.
Collapse
Affiliation(s)
- Anna Duerig
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huber R, O'Day DH. An EGF-like peptide sequence from Dictyostelium enhances cell motility and chemotaxis. Biochem Biophys Res Commun 2008; 379:470-5. [PMID: 19121290 DOI: 10.1016/j.bbrc.2008.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 01/07/2023]
Abstract
Dictyostelium discoideum possesses more EGF-like (EGFL) domains than any other sequenced eukaryote. Here we show that a synthetic EGFL peptide (DdEGFL1) based upon an amino acid sequence from a cysteine-rich Dictyostelium protein, functions extracellularly to enhance random cell motility and cAMP-mediated chemotaxis in Dictyostelium by 625% and 85%, respectively, in strain NC4 and by 620% and 80% in strain AX3. Quinacrine inhibited peptide-enhanced random motility but not chemotaxis in strain AX3 providing evidence that PLA2 is the predominant regulator of this process. While LY294002 alone had no significant effect on either event, in combination with quinacrine it dramatically inhibited both processes suggesting that both PI3K and PLA2-mediated signaling are required for EGFL peptide-enhanced cell movement. DdEGFL1 also sustained the threonine phosphorylation of a 210kDa protein that is dephosphorylated during Dictyostelium starvation. Taken together, these results suggest an important role for certain EGFL peptides in Dictyostelium cell movement.
Collapse
Affiliation(s)
- Robert Huber
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ont., Canada M5S 3G5
| | | |
Collapse
|
32
|
Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27:5464-76. [PMID: 18794881 DOI: 10.1038/onc.2008.243] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.
Collapse
Affiliation(s)
- N R Leslie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, James Black Centre, Dundee, Scotland, UK.
| | | | | | | | | |
Collapse
|
33
|
Mignot T, Kirby JR. Genetic circuitry controlling motility behaviors of Myxococcus xanthus. Bioessays 2008; 30:733-43. [PMID: 18623059 DOI: 10.1002/bies.20790] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.
Collapse
Affiliation(s)
- Tâm Mignot
- Institut de Biologie Structurale et Microbiologie. Laboratoire de Chimie Bactérienne, CNRS UPR 9043, Groupe de Biologie Cellulaire de la Motilité Bactérienne, Marseille, France.
| | | |
Collapse
|
34
|
Affiliation(s)
- Anna Bagorda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892-4256, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892-4256, USA
| |
Collapse
|
35
|
van Egmond WN, Kortholt A, Plak K, Bosgraaf L, Bosgraaf S, Keizer-Gunnink I, van Haastert PJM. Intramolecular activation mechanism of the Dictyostelium LRRK2 homolog Roco protein GbpC. J Biol Chem 2008; 283:30412-20. [PMID: 18703517 DOI: 10.1074/jbc.m804265200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GbpC is a large multidomain protein involved in cGMP-mediated chemotaxis in the cellular slime mold Dictyostelium discoideum. GbpC belongs to the Roco family of proteins that often share a central core region, consisting of leucine-rich repeats, a Ras domain (Roc), a Cor domain, and a MAPKKKinase domain. In addition to this core, GbpC contains a RasGEF domain and two cGMP-binding domains. Here, we report on an intramolecular signaling cascade of GbpC. In vitro, the RasGEF domain of GbpC specifically accelerates the GDP/GTP exchange of the Roc domain. Moreover, cGMP binding to GbpC strongly stimulates the binding of GbpC to GTP-agarose, suggesting cGMP-stimulated GDP/GTP exchange at the Roc domain. The function of the protein in vivo was investigated by rescue analysis of the chemotactic defect of gbpC null cells. Mutants that lack a functional guanine exchange factor (GEF), Roc, or kinase domain are inactive in vivo. Together, the results suggest a four-step intramolecular activation mechanism of the Roco protein GbpC: cGMP binding to the cyclic nucleotide-binding domains, activation of the GEF domain, GDP/GTP exchange of Roc, and activation of the MAPKKK domain.
Collapse
Affiliation(s)
- Wouter N van Egmond
- Department of Cell Biochemistry, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Directional sensing during chemotaxis. FEBS Lett 2008; 582:2075-85. [PMID: 18452713 DOI: 10.1016/j.febslet.2008.04.035] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/16/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Cells have the innate ability to sense and move towards a variety of chemoattractants. We investigate the pathways by which cells sense and respond to chemoattractant gradients. We focus on the model system Dictyostelium and compare our understanding of chemotaxis in this system with recent advances made using neutrophils and other mammalian cell types, which share many molecular components and signaling pathways with Dictyostelium. This review also examines models that have been proposed to explain how cells are able to respond to small differences in ligand concentrations between the anterior leading edge and posterior of the cell. In addition, we highlight the overlapping functions of many signaling components in diverse processes beyond chemotaxis, including random cell motility and cell division.
Collapse
|