1
|
Yang S, Guo CH, Tong WY, Liu XY, Li JC, Kang M. Identification and characterization of anaerobically activated promoters in Escherichia coli. J Biotechnol 2025; 402:30-38. [PMID: 40049517 DOI: 10.1016/j.jbiotec.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Anaerobically activated promoters in Escherichia coli play crucial roles in transcriptional regulation during cellular responses to decreased oxygen concentrations and serve as essential tools for implementing dynamic regulation in metabolic engineering. These promoters exhibit transcriptional activity only under low-oxygen or anaerobic conditions. To discover novel anaerobically activated promoters, this study selected 11 native promoters from E. coli databases and characterized their activities using flow cytometry. Subsequently, we optimized the key elements of these promoters and re-evaluated their activities to investigate the impact of functional elements on promoter performance. Furthermore, we verified the regulatory mechanisms of these promoters by knocking out host regulatory genes. Finally, we characterized the promoters' responsiveness to aerobic-anaerobic transitions by rapidly switching cultivation environments during host growth. This study identified several novel anaerobically activated promoters and comprehensively characterized their performance and features from multiple aspects. The identified promoters provide new tools for oxygen-limited or anaerobic production in metabolic engineering, while the findings from promoter element optimization offer valuable references for the design of anaerobically activated promoters.
Collapse
Affiliation(s)
- Sen Yang
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Chao-Hao Guo
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Wen-Yue Tong
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiao-Yun Liu
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Jing-Chen Li
- College of Life Science, Hebei University, Baoding, Hebei 071002, China.
| | - Ming Kang
- College of Life Science, Hebei University, Baoding, Hebei 071002, China; Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
2
|
Pech-Santiago EO, Argüello-García R, Arce-Cruz G, Angeles E, Ortega-Pierres G. Giardia duodenalis flavohemoglobin is a target of 5-nitroheterocycle and benzimidazole compounds acting as enzymatic inhibitors or subversive substrates. Free Radic Biol Med 2025; 227:355-366. [PMID: 39645206 DOI: 10.1016/j.freeradbiomed.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Giardia duodenalis causes giardiasis in humans, companion, livestock and wild animals. Control of infection involves drugs as benzimidazoles (e.g., albendazole, ABZ) and 5-nitroheterocyclics [5-NHs: metronidazole (MTZ), furazolidone (FZD), nitazoxanide (NTZ)] as first-line agents. During infection, Giardia is exposed to immune and pro-oxidant host responses involving nitric oxide (NO). In Giardia, NO is detoxified by a flavohemoglobin (gFlHb), a heme-containing enzyme which is absent in mammals. gFlHb has NO dioxygenase and NADH oxidase activities converting NO into nitrate and producing a superoxide anion (O2•-) that causes oxidative stress and parasite death. The modulation of gFlHb activities may provide novel approaches for treatment of giardiasis. We investigated the capacity of selected benzimidazole-2-carbamates (BZCs: ABZ, oxibendazole, nocodazole), non-BZCs (thiabendazole), an ehtylphenylcarbamate (LQM-996) and 5-NHs (MTZ, NTZ, FZD and some derivatives) to bind to recombinant gFlHb at the heme group, modifying NADH consumption activity and/or inducing ROS production. Of these, BZCs and NTZ bind to heme and increased O2•- production (i.e. caused enzyme subversion), whereas MTZ binds to heme but inhibited NADH consumption. LQM-996 decreased NADH consumption and two out of four NTZ derivatives altered NADH oxidase activity. In silico docking and molecular dynamics studies suggested the interaction of distinct drug moieties in ABZ and NTZ with gFlHb sites involved in NADH and NO catalysis. These findings provide new insights on gFlHb as a novel target of BZCs, MTZ and NTZ, and provides a useful platform to assess the compounds binding capacity to gFlHb prior to experimental and clinical trials in giardiasis.
Collapse
Affiliation(s)
- Edar Onam Pech-Santiago
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Mexico City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Mexico City, Mexico
| | - Guadalupe Arce-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Mexico City, Mexico
| | - Enrique Angeles
- Laboratorio de Química Medicinal, Facultad de Estudios Superiores Cuautitilán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, 54740, Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Sergunin A, Vávra J, Pašek D, Shimizu T, Martínková M. Multiple roles for iron in microbial physiology: Bacterial oxygen sensing by heme-based sensors. Adv Microb Physiol 2024; 86:257-329. [PMID: 40404271 DOI: 10.1016/bs.ampbs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Bacterial oxygen sensing embodies a fascinating interplay between evolutionary pressures and physiological adaptations to varying oxygen levels. Throughout Earth's history, the composition of the atmosphere has undergone significant changes, from anoxic conditions to the gradual accumulation of oxygen. In response, microbial life has evolved diverse strategies to cope with these shifting oxygen levels, ranging from anaerobic metabolism to oxygen-dependent pathways crucial for energy production and cellular processes typical for eukaryotic, multicellular organisms. Of particular interest is the role of iron in bacterial oxygen sensing systems, which play pivotal roles in adaptation to changing oxygen levels. Only free iron, heme-iron, and non-heme iron directly sense oxygen. These iron-containing proteins, such as heme-containing sensors and iron-sulfur cluster proteins, regulate the expression of genes and activity of enzymes involved in oxidative stress defence, virulence, and biofilm formation, highlighting their significance in bacterial pathogenesis and environmental adaptation. Special attention in the review is paid to the mechanisms of oxygen detection and signal transduction from heme-containing sensing to functional domains in the case of bacterial heme-based oxygen sensors.
Collapse
Affiliation(s)
- Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic; National Radiation Protection Institute, Bartoskova, Prague, Czech Republic
| | - Dominik Pašek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov), Prague, Czech Republic.
| |
Collapse
|
5
|
Schuelke-Sanchez A, Yennawar NH, Weinert EE. Oxygen-selective regulation of cyclic di-GMP synthesis by a globin coupled sensor with a shortened linking domain modulates Shewanella sp. ANA-3 biofilm. J Inorg Biochem 2024; 252:112482. [PMID: 38218138 PMCID: PMC11616453 DOI: 10.1016/j.jinorgbio.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.
Collapse
Affiliation(s)
- Ariel Schuelke-Sanchez
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Ponath F, Zhu Y, Cosi V, Vogel J. Expanding the genetic toolkit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum. Proc Natl Acad Sci U S A 2022; 119:e2201460119. [PMID: 36161895 PMCID: PMC9546586 DOI: 10.1073/pnas.2201460119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| |
Collapse
|
7
|
Huang LH, Li XJ, Wang YT, Jia SR, Xin B, Zhong C. Enhancing bacterial cellulose production with hypoxia-inducible factors. Appl Microbiol Biotechnol 2022; 106:7099-7112. [PMID: 36184690 DOI: 10.1007/s00253-022-12192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 12/01/2022]
Abstract
Komagataeibacter xylinus is an aerobic strain that produces bacterial cellulose (BC). Oxygen levels play a critical role in regulating BC synthesis in K. xylinus, and an increase in oxygen tension generally means a decrease in BC production. Fumarate nitrate reduction protein (FNR) and aerobic respiration control protein A (ArcA) are hypoxia-inducible factors, which can signal whether oxygen is present in the environment. In this study, FNR and ArcA were used to enhance the efficiency of oxygen signaling in K. xylinus, and globally regulate the transcription of the genome to cope with hypoxic conditions, with the goal of improving growth and BC production. FNR and ArcA were individually overexpressed in K. xylinus, and the engineered strains were cultivated under different oxygen tensions to explore how their overexpression affects cellular metabolism and regulation. Although FNR overexpression did not improve BC production, ArcA overexpression increased BC production by 24.0% and 37.5% as compared to the control under oxygen tensions of 15% and 40%, respectively. Transcriptome analysis showed that FNR and ArcA overexpression changed the way K. xylinus coped with oxygen tension changes, and that both FNR and ArcA overexpression enhanced the BC synthesis pathway. The results of this study provide a new perspective on the effect of oxygen signaling on growth and BC production in K. xylinus and suggest a promising strategy for enhancing BC production through metabolic engineering. KEY POINTS: • K. xylinus BC production increased after overexpression of ArcA • The young's modulus is enhanced by the ArcA overexpression • ArcA and FNR overexpression changed how cells coped with changes in oxygen tension.
Collapse
Affiliation(s)
- Long-Hui Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Xue-Jing Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Yi-Tong Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Bo Xin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China.
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin, People's Republic of China.
| |
Collapse
|
8
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
9
|
Aldawood E, Roberts IS. Regulation of Escherichia coli Group 2 Capsule Gene Expression: A Mini Review and Update. Front Microbiol 2022; 13:858767. [PMID: 35359738 PMCID: PMC8960920 DOI: 10.3389/fmicb.2022.858767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of a group 2 capsule (K antigen), such as the K1 or K5 antigen, is a key virulence factor of Escherichia coli responsible for extra-intestinal infections. Capsule expression confers resistance to innate host defenses and plays a critical role in invasive disease. Capsule expression is temperature-dependent being expressed at 37°C but not at 20°C when outside the host. Group 2 capsule gene expression involves two convergent promoters PR1 and PR3, the regulation of which is critical to capsule expression. Temperature-dependent expression is controlled at transcriptional level directly by the binding of H-NS to PR1 and PR3 and indirectly through BipA with additional input from IHF and SlyA. More recently, other regulatory proteins, FNR, Fur, IHF, MprA, and LrhA, have been implicated in regulating capsule gene expression in response to other environmental stimuli and there is merging data for the growth phase-dependent regulation of the PR1 and PR3 promoters. The aim of the present Mini Review is to provide a unified update on the latest data on how the expression of group 2 capsules is regulated in response to a number of stimuli and the growth phase something that has not to date been addressed.
Collapse
Affiliation(s)
- Esraa Aldawood
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Clinical Laboratory Science, Collage of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian S. Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- *Correspondence: Ian S. Roberts,
| |
Collapse
|
10
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
11
|
The effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides. BMC Microbiol 2021; 21:266. [PMID: 34607564 PMCID: PMC8489083 DOI: 10.1186/s12866-021-02322-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anoxic redox control binary system plays an important role in the response to oxygen as a signal in the environment. In particular, phosphorylated ArcA, as a global transcription factor, binds to the promoter regions of its target genes to regulate the expression of aerobic and anaerobic metabolism genes. However, the function of ArcA in Plesiomonas shigelloides is unknown. RESULTS In the present study, P. shigelloides was used as the research object. The differences in growth, motility, biofilm formation, and virulence between the WT strain and the ΔarcA isogenic deletion mutant strain were compared. The data showed that the absence of arcA not only caused growth retardation of P. shigelloides in the log phase, but also greatly reduced the glucose utilization in M9 medium before the stationary phase. The motility of the ΔarcA mutant strain was either greatly reduced when grown in swim agar, or basically lost when grown in swarm agar. The electrophoretic mobility shift assay results showed that ArcA bound to the promoter regions of the flaK, rpoN, and cheV genes, indicating that ArcA directly regulates the expression of these three motility-related genes in P. shigelloides. Meanwhile, the ability of the ΔarcA strain to infect Caco-2 cells was reduced by 40%; on the contrary, its biofilm formation was enhanced. Furthermore, the complementation of the WT arcA gene from pBAD33-arcA+ was constructed and all of the above features of the pBAD33-arcA+ complemented strain were restored to the WT level. CONCLUSIONS We showed the effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides, and demonstrated that ArcA functions as a positive regulator controls the motility of P. shigelloides by directly regulating the expression of flaK, rpoN and cheV genes.
Collapse
|
12
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
13
|
Watanabe S, Shirai M, Kishi M, Ohnishi Y. Involvement of an FNR-like oxygen sensor in Komagataeibacter medellinensis for survival under oxygen depletion. Biosci Biotechnol Biochem 2021; 85:2065-2075. [PMID: 34191007 DOI: 10.1093/bbb/zbab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022]
Abstract
During acetic acid fermentation, acetic acid bacteria face oxygen depletion stress caused by the vigorous oxidation of ethanol to acetic acid. However, the molecular mechanisms underlying the response to oxygen depletion stress remain largely unknown. Here, we focused on an oxygen-sensing FNR homolog, FnrG, in Komagataeibacter medellinensis. Comparative transcriptomic analysis between the wild-type and fnrG-disrupted strains revealed that FnrG upregulated eight genes (fold change > 3). Recombinant FnrG bound to a specific DNA sequence only when FnrG was reconstituted anaerobically. An operon consisting of acetate kinase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase genes was found to be an FnrG regulon involved in cell survival under oxygen-limiting conditions. Moreover, a strain that overexpressed these two genes accumulated more acetic acid than the wild-type strain harboring an empty vector. Thus, these two genes could be new targets for the molecular breeding of acetic acid bacteria with high acetic acid productivity.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Central Research Institute, Mizkan Holdings Co. Ltd., 2-6 Nakamura-cho, Handa-shi, Aichi 475-8585, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co. Ltd., 2-6 Nakamura-cho, Handa-shi, Aichi 475-8585, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Porrini C, Ramarao N, Tran SL. Dr. NO and Mr. Toxic - the versatile role of nitric oxide. Biol Chem 2021; 401:547-572. [PMID: 31811798 DOI: 10.1515/hsz-2019-0368] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is present in various organisms from humans, to plants, fungus and bacteria. NO is a fundamental signaling molecule implicated in major cellular functions. The role of NO ranges from an essential molecule to a potent mediator of cellular damages. The ability of NO to react with a broad range of biomolecules allows on one hand its regulation and a gradient concentration and on the other hand to exert physiological as well as pathological functions. In humans, NO is implicated in cardiovascular homeostasis, neurotransmission and immunity. However, NO can also contribute to cardiovascular diseases (CVDs) or septic shock. For certain denitrifying bacteria, NO is part of their metabolism as a required intermediate of the nitrogen cycle. However, for other bacteria, NO is toxic and harmful. To survive, those bacteria have developed processes to resist this toxic effect and persist inside their host. NO also contributes to maintain the host/microbiota homeostasis. But little is known about the impact of NO produced during prolonged inflammation on microbiota integrity, and some pathogenic bacteria take advantage of the NO response to colonize the gut over the microbiota. Taken together, depending on the environmental context (prolonged production, gradient concentration, presence of partners for interaction, presence of oxygen, etc.), NO will exert its beneficial or detrimental function. In this review, we highlight the dual role of NO for humans, pathogenic bacteria and microbiota, and the mechanisms used by each organism to produce, use or resist NO.
Collapse
Affiliation(s)
- Constance Porrini
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nalini Ramarao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Seav-Ly Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Gluconobacter oxydans Affects Expression of Genes Involved in Respiration and Redox Metabolism. Appl Environ Microbiol 2021; 87:AEM.00195-21. [PMID: 33741613 DOI: 10.1128/aem.00195-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gene expression in the obligately aerobic acetic acid bacterium Gluconobacter oxydans responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR. The direct target genes of GoxR were determined by combining several approaches, including a transcriptome comparison of a ΔgoxR mutant with the wild-type strain and detection of in vivo GoxR binding sites by chromatin affinity purification and sequencing (ChAP-Seq). Prominent targets were the cioAB genes encoding a cytochrome bd oxidase with low O2 affinity, which were repressed by GoxR, and the pnt operon, which was activated by GoxR. The pnt operon encodes a transhydrogenase (pntA1A2B), an NADH-dependent oxidoreductase (GOX0313), and another oxidoreductase (GOX0314). Evidence was obtained for GoxR being active despite a high dissolved oxygen concentration in the medium. We suggest a model in which the very high respiration rates of G. oxydans due to periplasmic oxidations cause an oxygen-limited cytoplasm and insufficient reoxidation of NAD(P)H in the respiratory chain, leading to inhibited cytoplasmic carbohydrate degradation. GoxR-triggered induction of the pnt operon enhances fast interconversion of NADPH and NADH by the transhydrogenase and NADH reoxidation by the GOX0313 oxidoreductase via reduction of acetaldehyde formed by pyruvate decarboxylase to ethanol. In fact, small amounts of ethanol were formed by G. oxydans under oxygen-restricted conditions in a GoxR-dependent manner.IMPORTANCE Gluconobacter oxydans serves as a cell factory for oxidative biotransformations based on membrane-bound dehydrogenases and as a model organism for elucidating the metabolism of acetic acid bacteria. Surprisingly, to our knowledge none of the more than 100 transcriptional regulators encoded in the genome of G. oxydans has been studied experimentally until now. In this work, we analyzed the function of a regulator named GoxR, which belongs to the FNR family. Members of this family serve as oxygen sensors by means of an oxygen-sensitive [4Fe-4S] cluster and typically regulate genes important for growth under anoxic conditions by anaerobic respiration or fermentation. Because G. oxydans has an obligatory aerobic respiratory mode of energy metabolism, it was tempting to elucidate the target genes regulated by GoxR. Our results show that GoxR affects the expression of genes that support the interconversion of NADPH and NADH and the NADH reoxidation by reduction of acetaldehyde to ethanol.
Collapse
|
16
|
Nitrate-responsive suppression of DMSO respiration in a facultative anaerobic haloarchaeon Haloferax volcanii. J Bacteriol 2021; 203:e0065520. [PMID: 33820797 DOI: 10.1128/jb.00655-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Haloferax volcanii is a facultative anaerobic haloarchaeon that can grow using nitrate or dimethyl sulfoxide (DMSO) as respiratory substrates in an anaerobic condition. Comparative transcriptome analysis of denitrifying and aerobic cells of H. volcanii indicated extensive changes in the gene expression involving activation of denitrification, suppression of DMSO respiration, and conversion of the heme biosynthetic pathway under denitrifying condition. Anaerobic growth of H. volcanii by DMSO respiration was inhibited at nitrate concentrations lower than 1 mM, whereas the nitrate-responsive growth inhibition was not observed in the ΔnarO mutant. A reporter assay experiment demonstrated that transcription of the dms operon was suppressed by nitrate. In contrast, anaerobic growth of the ΔdmsR mutant by denitrification was little affected by addition of DMSO. NarO has been identified as an activator of the denitrification-related genes in response to anaerobic conditions, and here we found that NarO is also involved in nitrate-responsive suppression of the dms operon. Nitrate-responsive suppression of DMSO respiration is known in several bacteria, such as Escherichia coli and photosynthetic Rhodobacter sp. This is the first report to show that a regulatory mechanism that suppresses DMSO respiration in response to nitrate exists not only in bacteria but also in the haloarchaea.IMPORTANCE Haloferax volcanii can grow anaerobically by denitrification (nitrate respiration) or DMSO respiration. In the facultative anaerobic bacteria that can grow by both nitrate respiration and DMSO respiration, nitrate respiration is preferentially induced when both nitrate and DMSO are available as respiratory substrates. The results of transcriptome analysis, growth phenotyping, and reporter assay indicated that DMSO respiration is suppressed in response to nitrate in H. volcanii The haloarchaea-specific regulator NarO, which activates denitrification under anaerobic conditions, is suggested to be involved in the nitrate-responsive suppression of DMSO respiration.
Collapse
|
17
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
18
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Batista MB, Chandra G, Monteiro RA, de Souza EM, Dixon R. Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae. Nucleic Acids Res 2019. [PMID: 29529262 PMCID: PMC5934665 DOI: 10.1093/nar/gky142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3–Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3–Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations.
Collapse
Affiliation(s)
- Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, P.O. Box 19046, Curitiba, PR 81531-990, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, P.O. Box 19046, Curitiba, PR 81531-990, Brazil
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
20
|
Osorio H, Mettert E, Kiley P, Dopson M, Jedlicki E, Holmes DS. Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans. Front Microbiol 2019; 10:1642. [PMID: 31379789 PMCID: PMC6659574 DOI: 10.3389/fmicb.2019.01642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
The ability to conserve energy in the presence or absence of oxygen provides a metabolic versatility that confers an advantage in natural ecosystems. The switch between alternative electron transport systems is controlled by the fumarate nitrate reduction transcription factor (FNR) that senses oxygen via an oxygen-sensitive [4Fe-4S]2+ iron-sulfur cluster. Under O2 limiting conditions, FNR plays a key role in allowing bacteria to transition from aerobic to anaerobic lifestyles. This is thought to occur via transcriptional activation of genes involved in anaerobic respiratory pathways and by repression of genes involved in aerobic energy production. The Proteobacterium Acidithiobacillus ferrooxidans is a model species for extremely acidophilic microorganisms that are capable of aerobic and anaerobic growth on elemental sulfur coupled to oxygen and ferric iron reduction, respectively. In this study, an FNR-like protein (FNRAF) was discovered in At. ferrooxidans that exhibits a primary amino acid sequence and major motifs and domains characteristic of the FNR family of proteins, including an effector binding domain with at least three of the four cysteines known to coordinate an [4Fe-4S]2+ center, a dimerization domain, and a DNA binding domain. Western blotting with antibodies against Escherichia coli FNR (FNREC) recognized FNRAF. FNRAF was able to drive expression from the FNR-responsive E. coli promoter PnarG, suggesting that it is functionally active as an FNR-like protein. Upon air exposure, FNRAF demonstrated an unusual lack of sensitivity to oxygen compared to the archetypal FNREC. Comparison of the primary amino acid sequence of FNRAF with that of other natural and mutated FNRs, including FNREC, coupled with an analysis of the predicted tertiary structure of FNRAF using the crystal structure of the related FNR from Aliivibrio fisheri as a template revealed a number of amino acid changes that could potentially stabilize FNRAF in the presence of oxygen. These include a truncated N terminus and amino acid changes both around the putative Fe-S cluster coordinating cysteines and also in the dimer interface. Increased O2 stability could allow At. ferrooxidans to survive in environments with fluctuating O2 concentrations, providing an evolutionary advantage in natural, and engineered environments where oxygen gradients shape the bacterial community.
Collapse
Affiliation(s)
- Héctor Osorio
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Patricia Kiley
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Eugenia Jedlicki
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Santiago, Chile
- Universidad San Sebastian, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
21
|
Integrated Omic Analyses Provide Evidence that a " Candidatus Accumulibacter phosphatis" Strain Performs Denitrification under Microaerobic Conditions. mSystems 2019; 4:mSystems00193-18. [PMID: 30944872 PMCID: PMC6446978 DOI: 10.1128/msystems.00193-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of "Candidatus Accumulibacter phosphatis" to grow and remove phosphorus from wastewater under cycling anaerobic and aerobic conditions has also been investigated as a metabolism that could lead to simultaneous removal of nitrogen and phosphorus by a single organism. However, although phosphorus removal under cyclic anaerobic and anoxic conditions has been demonstrated, clarifying the role of "Ca. Accumulibacter phosphatis" in this process has been challenging, since (i) experimental research describes contradictory findings, (ii) none of the published "Ca. Accumulibacter phosphatis" genomes show the existence of a complete respiratory pathway for denitrification, and (iii) some genomes lacking a complete respiratory pathway have genes for assimilatory nitrate reduction. In this study, we used an integrated omics analysis to elucidate the physiology of a "Ca. Accumulibacter phosphatis" strain enriched in a reactor operated under cyclic anaerobic and microaerobic conditions. The reactor's performance suggested the ability of the enriched "Ca. Accumulibacter phosphatis" strain (clade IC) to simultaneously use oxygen and nitrate as electron acceptors under microaerobic conditions. A draft genome of this organism was assembled from metagenomic reads ("Ca. Accumulibacter phosphatis" UW-LDO-IC) and used as a reference to examine transcript abundance throughout one reactor cycle. The genome of UW-LDO-IC revealed the presence of a full pathway for respiratory denitrification. The observed transcript abundance patterns showed evidence of coregulation of the denitrifying genes along with a cbb 3 cytochrome, which has been characterized as having high affinity for oxygen. Furthermore, we identified an FNR-like binding motif upstream of the coregulated genes, suggesting transcription-level regulation of both denitrifying and respiratory pathways in UW-LDO-IC. Taking the results together, the omics analysis provides strong evidence that "Ca. Accumulibacter phosphatis" UW-LDO-IC uses oxygen and nitrate simultaneously as electron acceptors under microaerobic conditions. IMPORTANCE "Candidatus Accumulibacter phosphatis" is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that "Ca. Accumulibacter phosphatis" is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.
Collapse
|
22
|
Mettert EL, Kiley PJ. Reassessing the Structure and Function Relationship of the O 2 Sensing Transcription Factor FNR. Antioxid Redox Signal 2018; 29:1830-1840. [PMID: 28990402 PMCID: PMC6217745 DOI: 10.1089/ars.2017.7365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The Escherichia coli regulatory protein fumarate nitrate reduction (FNR) mediates a global transcriptional response upon O2 deprivation. Spanning nearly 40 years of research investigations, our understanding of how FNR senses and responds to O2 has considerably progressed despite a lack of structural information for most of that period. This knowledge has established the paradigm for how facultative anaerobic bacteria sense changes in O2 tension. Recent Advances: Recently, the X-ray crystal structure of Aliivibrio fischeri FNR with its [4Fe-4S] cluster cofactor was solved and has provided valuable new insight into FNR structure and function. These findings have alluded to the conformational changes that may occur to alter FNR activity in response to O2. CRITICAL ISSUES Here, we review the major features of this structure in context of previously acquired data. In doing so, we discuss additional mechanistic aspects of FNR function that warrant further investigation. FUTURE DIRECTIONS To complement the [4Fe-4S]-FNR structure, the structures of apo-FNR and FNR bound to DNA or RNA polymerase are needed. Together, these structures would elevate our understanding of how ligation of its [4Fe-4S] cluster allows FNR to regulate transcription according to the level of environmental O2.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
23
|
Eisenhardt KMH, Reuscher CM, Klug G. PcrX, an sRNA derived from the 3'- UTR of the Rhodobacter sphaeroides puf operon modulates expression of puf genes encoding proteins of the bacterial photosynthetic apparatus. Mol Microbiol 2018; 110:325-334. [PMID: 29995316 DOI: 10.1111/mmi.14076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
Facultative phototrophic bacteria like Rhodobacter sphaeroides can produce ATP by anoxygenic photosynthesis, which is of advantage under conditions with limiting oxygen. However, the simultaneous presence of pigments, light and oxygen leads to the generation of harmful singlet oxygen. In order to avoid this stress situation, the formation of photosynthetic complexes is tightly regulated by light and oxygen signals. In a complex regulatory network several regulatory proteins and the small non-coding RNA PcrZ contribute to the balanced expression of photosynthesis genes. With PcrX this study identifies a second sRNA that is part of this network. The puf operon encodes pigment binding proteins of the light-harvesting I complex (PufBA) and of the reaction center (PufLM), a protein regulating porphyrin flux (PufQ), and a scaffolding protein (PufX). The PcrX sRNA is derived from the 3' UTR of the puf operon mRNA by RNase E-mediated cleavage. It targets the pufX mRNA segment, reduces the half-life of the pufBALMX mRNA and as a consequence affects the level of photosynthetic complexes. By its action PcrX counteracts the increased expression of photosynthesis genes that is mediated by protein regulators and is thus involved in balancing the formation of photosynthetic complexes in response to external stimuli.
Collapse
Affiliation(s)
- Katrin M H Eisenhardt
- Institut für Mikrobiologie und Molekularbiologie, Justus Liebig Universität Giessen, IFZ, Giessen, Germany
| | - Carina M Reuscher
- Institut für Mikrobiologie und Molekularbiologie, Justus Liebig Universität Giessen, IFZ, Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Justus Liebig Universität Giessen, IFZ, Giessen, Germany
| |
Collapse
|
24
|
Matiiv AB, Chekunova EM. Aureochromes - Blue Light Receptors. BIOCHEMISTRY (MOSCOW) 2018; 83:662-673. [PMID: 30195323 DOI: 10.1134/s0006297918060044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of living organisms including bacteria, fungi, animals, and plants use blue light (BL) to adapt to changing ambient light. Photosynthetic forms (plants and algae) require energy of light for photosynthesis, movements, development, and regulation of activity. Several complex light-sensitive systems evolved in eukaryotic cells to use the information of light efficiently with photoreceptors selectively absorbing various segments of the solar spectrum, being the first components in the light signal transduction chain. They are most diverse in algae. Photosynthetic stramenopiles, which received chloroplasts from red algae during secondary symbiosis, play an important role in ecosystems and aquaculture, being primary producers. These taxa acquired the ability to use BL for regulation of such processes as phototropism, chloroplast photo-relocation movement, and photomorphogenesis. A new type of BL receptor - aureochrome (AUREO) - was identified in Vaucheria frigida in 2007. AUREO consists of two domains: bZIP (basic-region leucine zipper) domain and LOV (light-oxygen-voltage-sensing) domain, and thus this photoreceptor is a BL-sensitive transcription factor. This review presents current data on the structure, mechanisms of action, and biochemical features of aureochromes.
Collapse
Affiliation(s)
- A B Matiiv
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia
| | - E M Chekunova
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia.
| |
Collapse
|
25
|
Nitzschke A, Bettenbrock K. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12. PLoS One 2018; 13:e0194699. [PMID: 29614086 PMCID: PMC5882134 DOI: 10.1371/journal.pone.0194699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023] Open
Abstract
The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK.
Collapse
Affiliation(s)
- Annika Nitzschke
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Sandtorstraße, Magdeburg, Germany
| | - Katja Bettenbrock
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Sandtorstraße, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium " Candidatus Nitrospira nitrosa". mSystems 2017; 2:mSystems00059-17. [PMID: 28905001 PMCID: PMC5596200 DOI: 10.1128/msystems.00059-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023] Open
Abstract
Nitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches. The recently discovered comammox bacteria have the potential to completely oxidize ammonia to nitrate. These microorganisms are part of the Nitrospira genus and are present in a variety of environments, including biological nutrient removal (BNR) systems. However, the physiological traits within and between comammox and nitrite-oxidizing bacterium (NOB)-like Nitrospira species have not been analyzed in these ecosystems. In this study, we identified Nitrospira strains dominating the nitrifying community of a sequencing batch reactor (SBR) performing BNR under microaerobic conditions. We recovered metagenome-derived draft genomes from two Nitrospira strains: (i) Nitrospira sp. strain UW-LDO-01, a comammox-like organism classified as “Candidatus Nitrospira nitrosa,” and (ii) Nitrospira sp. strain UW-LDO-02, a nitrite-oxidizing strain belonging to the Nitrospira defluvii species. A comparative genomic analysis of these strains with other Nitrospira-like genomes identified genomic differences in “Ca. Nitrospira nitrosa” mainly attributed to each strain’s niche adaptation. Traits associated with energy metabolism also differentiate comammox from NOB-like genomes. We also identified several transcriptionally regulated adaptive traits, including stress tolerance, biofilm formation, and microaerobic metabolism, which might explain survival of Nitrospira under multiple environmental conditions. Overall, our analysis expanded our understanding of the genetic functional features of “Ca. Nitrospira nitrosa” and identified genomic traits that further illuminate the phylogenetic diversity and metabolic plasticity of the Nitrospira genus. IMPORTANCENitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches. Author Video: An author video summary of this article is available.
Collapse
|
27
|
Lara AR, Jaén KE, Sigala JC, Mühlmann M, Regestein L, Büchs J. Characterization of Endogenous and Reduced Promoters for Oxygen-Limited Processes Using Escherichia coli. ACS Synth Biol 2017; 6:344-356. [PMID: 27715021 DOI: 10.1021/acssynbio.6b00233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxygen limitation can be used as a simple environmental inducer for the expression of target genes. However, there is scarce information on the characteristics of microaerobic promoters potentially useful for cell engineering and synthetic biology applications. Here, we characterized the Vitreoscilla hemoglobin promoter (Pvgb) and a set of microaerobic endogenous promoters in Escherichia coli. Oxygen-limited cultures at different maximum oxygen transfer rates were carried out. The FMN-binding fluorescent protein (FbFP), which is a nonoxygen dependent marker protein, was used as a reporter. Fluorescence and fluorescence emission rates under oxygen-limited conditions were the highest when FbFP was under transcriptional control of PadhE, Ppfl and Pvgb. The lengths of the E. coli endogenous promoters were shortened by 60%, maintaining their key regulatory elements. This resulted in improved promoter activity in most cases, particularly for PadhE, Ppfl and PnarK. Selected promoters were also evaluated using an engineered E. coli strain expressing Vitreoscilla hemoglobin (VHb). The presence of the VHb resulted in a better repression using these promoters under aerobic conditions, and increased the specific growth and fluorescence emission rates under oxygen-limited conditions. These results are useful for the selection of promoters for specific applications and for the design of modified artificial promoters.
Collapse
Affiliation(s)
- Alvaro R. Lara
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Karim E. Jaén
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Juan-Carlos Sigala
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Martina Mühlmann
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - Lars Regestein
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
28
|
Burns JL, Rivera S, Deer DD, Joynt SC, Dvorak D, Weinert EE. Oxygen and Bis(3',5')-cyclic Dimeric Guanosine Monophosphate Binding Control Oligomerization State Equilibria of Diguanylate Cyclase-Containing Globin Coupled Sensors. Biochemistry 2016; 55:6642-6651. [PMID: 27933792 DOI: 10.1021/acs.biochem.6b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.
Collapse
Affiliation(s)
- Justin L Burns
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - D Douglas Deer
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Shawnna C Joynt
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - David Dvorak
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| | - Emily E Weinert
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30307, United States
| |
Collapse
|
29
|
Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, Lovering AL, Stapleton MR, Green J, Cole JA. Regulation, sensory domains and roles of twoDesulfovibrio desulfuricansATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol 2016; 102:1120-1137. [DOI: 10.1111/mmi.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ian T. Cadby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Susan A. Ibrahim
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Matthew Faulkner
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - David J. Lee
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Douglas Browning
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Stephen J. Busby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Melanie R. Stapleton
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey A. Cole
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
30
|
Rivera S, Burns JL, Vansuch GE, Chica B, Weinert EE. Globin domain interactions control heme pocket conformation and oligomerization of globin coupled sensors. J Inorg Biochem 2016; 164:70-76. [PMID: 27614715 DOI: 10.1016/j.jinorgbio.2016.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022]
Abstract
Globin coupled sensors (GCS) are O2-sensing proteins used by bacteria to monitor the surrounding gaseous environment. To investigate the biphasic O2 dissociation kinetics observed for full-length GCS proteins, isolated globin domains from Pectobacterium carotovorum ssp. carotovorum (PccGlobin), and Bordetella pertussis (BpeGlobin), have been characterized. PccGlobin is found to be dimeric, while BpeGlobin is monomeric, indicating key differences in the globin domain dimer interface. Through characterization of wild type globin domains and globin variants with mutations at the dimer interface and within the distal pocket, dimerization of the globin domain is demonstrated to correlate with biphasic dissociation kinetics. Furthermore, a distal pocket tyrosine is identified as the primary hydrogen bond donor, while a secondary hydrogen bond donor within the distal heme pocket is involved in conformation(s) that lead to the second O2 dissociation rate. These findings highlight the role of the globin dimer interface in controlling properties of both the heme pocket and full-length GCS proteins.
Collapse
Affiliation(s)
- Shannon Rivera
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Justin L Burns
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Gregory E Vansuch
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Bryant Chica
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
| | - Emily E Weinert
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA.
| |
Collapse
|
31
|
Fojtikova V, Bartosova M, Man P, Stranava M, Shimizu T, Martinkova M. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK. Biometals 2016; 29:715-29. [PMID: 27395436 DOI: 10.1007/s10534-016-9947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)-SH heme complex was quickly converted into Fe(II) and Fe(II)-O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)-SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)-OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity.
Collapse
Affiliation(s)
- Veronika Fojtikova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Martina Bartosova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic.,Biotechnology and Biomedicine Centre (BioCeV), Institute of Microbiology of the Czech Academy of Science, v.v.i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic.
| |
Collapse
|
32
|
Unden G, Strecker A, Kleefeld A, Kim OB. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth. EcoSal Plus 2016; 7. [PMID: 27415771 PMCID: PMC11575717 DOI: 10.1128/ecosalplus.esp-0021-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexander Strecker
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexandra Kleefeld
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
33
|
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Nucleic Acids Res 2016; 44:5957-70. [PMID: 27179025 PMCID: PMC4937327 DOI: 10.1093/nar/gkw420] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes’ light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical ‘aureo box’, TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity.
Collapse
Affiliation(s)
- Ankan Banerjee
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Elena Herman
- Physical and Biophysical Chemistry - Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Manuel Serif
- Plant Ecophysiology - Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec. 2 Nankang, Taipei 11529, Taiwan
| | - Sebastian Hepp
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Richard Pokorny
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Peter G Kroth
- Plant Ecophysiology - Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lars-Oliver Essen
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry - Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
34
|
Pratte BS, Thiel T. Homologous regulators, CnfR1 and CnfR2, activate expression of two distinct nitrogenase gene clusters in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 2016; 100:1096-109. [PMID: 26950042 DOI: 10.1111/mmi.13370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 02/06/2023]
Abstract
The cyanobacterium Anabaena variabilis has two Mo-nitrogenases that function under different environmental conditions in different cell types. The heterocyst-specific nitrogenase encoded by the large nif1 gene cluster and the similar nif2 gene cluster that functions under anaerobic conditions in vegetative cells are under the control of the promoter for the first gene of each cluster, nifB1 or nifB2 respectively. Associated with each of these clusters is a putative regulatory gene called cnfR (patB) whose product has a C-terminal HTH domain and an N-terminal ferredoxin-like domain. CnfR1 activates nifB1 expression in heterocysts, while CnfR2 activates nifB2 expression. A cnfR1 mutant was unable to make nitrogenase under aerobic conditions in heterocysts while the cnfR2 mutant was unable to make nitrogenase under anaerobic conditions. Mutations in cnfR1 and cnfR2 reduced transcripts for the nif1 and nif2 genes respectively. The closely related cyanobacterium, Anabaena sp. PCC 7120 has the nif1 system but lacks nif2. Expression of nifB2:lacZ from A. variabilis in anaerobic vegetative cells of Anabaena sp. PCC 7120 depended on the presence of cnfR2. This suggests that CnfR2 is necessary and sufficient for activation of the nifB2 promoter and that the CnfR1/CnfR2 family of proteins are the primary activators of nitrogenase gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Brenda S Pratte
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri - St. Louis, Research 223, St. Louis, MO, 63121, USA
| |
Collapse
|
35
|
Tolla DA, Kiley PJ, Lomnitz JG, Savageau MA. Design principles of a conditional futile cycle exploited for regulation. MOLECULAR BIOSYSTEMS 2016; 11:1841-9. [PMID: 25851148 DOI: 10.1039/c5mb00055f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we characterize the design principles of futile cycling in providing rapid adaptation by regulatory proteins that act as environmental sensors. In contrast to the energetically wasteful futile cycles that are avoided in metabolic pathways, here we describe a conditional futile cycle exploited for a regulatory benefit. The FNR (fumarate and nitrate reduction) cycle in Escherichia coli operates under two regimes - a strictly futile cycle in the presence of O2 and as a pathway under anoxic conditions. The computational results presented here use FNR as a model system and provide evidence that cycling of this transcription factor and its labile sensory cofactor between active and inactive states affords rapid signaling and adaptation. We modify a previously developed mechanistic model to examine a family of FNR models each with different cycling speeds but mathematically constrained to be otherwise equivalent, and we identify a trade-off between energy expenditure and response time that can be tuned by evolution to optimize cycling rate of the FNR system for a particular ecological context. Simulations mimicking experiments with proposed double mutant strains offer suggestions for experimentally testing our predictions and identifying potential fitness effects. Our approach provides a computational framework for analyzing other conditional futile cycles, which when placed in their larger biological context may be found to confer advantages to the organism.
Collapse
Affiliation(s)
- Dean A Tolla
- Biomedical Engineering Department, University of California, One Shields Ave, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
36
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
37
|
Tarnawski M, Barends TRM, Schlichting I. Structural analysis of an oxygen-regulated diguanylate cyclase. ACTA ACUST UNITED AC 2015; 71:2158-77. [PMID: 26527135 DOI: 10.1107/s139900471501545x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022]
Abstract
Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.
Collapse
Affiliation(s)
- Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Jiang D, Tikhomirova A, Bent SJ, Kidd SP. A discrete role for FNR in the transcriptional response to moderate changes in oxygen by Haemophilus influenzae Rd KW20. Res Microbiol 2015; 167:103-13. [PMID: 26499095 DOI: 10.1016/j.resmic.2015.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
The survival by pathogenic bacteria within the specific conditions of an anatomical niche is critical for their persistence. These conditions include the combination of toxic chemicals, such as reactive oxygen (ROS) and reactive nitrogen species (RNS), with factors relevant to cell growth, such as oxygen. Haemophilus influenzae senses oxygen levels largely through the redox state of the intracellular fumarate-nitrate global regulator (FNR). H. influenzae certainly encounters oxygen levels that fluctuate, but in reality, these would rarely reach a state that results in FNR being fully reduced or oxidized. We were therefore interested in the response of H. influenzae to ROS and RNS at moderately high or low oxygen levels and the corresponding role of FNR. At these levels of oxygen, even though the growth rate of an H. influenzae fnr mutant was similar to wild type, its ROS and RNS tolerance was significantly different. Additionally, the subtle changes in oxygen did alter the whole cell transcriptional profile and this was different between the wild type and fnr mutant strains. It was the changed whole cell profile that impacted on ROS/RNS defence, but surprisingly, the FNR-regulated, anaerobic nitrite reductase (NrfA) continued to be expressed and had a role in this phenotype.
Collapse
Affiliation(s)
- Donald Jiang
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia; Agri-Food and Veterinary Authority of Singapore, Singapore.
| | - Alexandra Tikhomirova
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Stephen J Bent
- School of Biological Science, The University of Adelaide, Adelaide, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, Australia.
| | - Stephen P Kidd
- Research Centre for Infectious Disease, The University of Adelaide, Adelaide, Australia; School of Biological Science, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
39
|
van der Steen JB, Hellingwerf KJ. Activation of the General Stress Response of Bacillus subtilis by Visible Light. Photochem Photobiol 2015; 91:1032-45. [PMID: 26189730 DOI: 10.1111/php.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
A key challenge for microbiology is to understand how evolution has shaped the wiring of regulatory networks. This is amplified by the paucity of information of power-spectra of physicochemical stimuli to which microorganisms are exposed. Future studies of genome evolution, driven by altered stimulus regimes, will therefore require a versatile signal transduction system that allows accurate signal dosing. Here, we review the general stress response of Bacillus subtilis, and its upstream signal transduction network, as a candidate system. It can be activated by red and blue light, and by many additional stimuli. Signal integration therefore is an intricate function of this system. The blue-light response is elicited via the photoreceptor YtvA, which forms an integral part of stressosomes, to activate expression of the stress regulon of B. subtilis. Signal transfer through this network can be assayed with reporter enzymes, while intermediate steps can be studied with live-cell imaging of fluorescently tagged proteins. Different parts of this system have been studied in vitro, such that its computational modeling has made significant progress. One can directly relate the microscopic characteristics of YtvA with activation of the general stress regulon, making this system a very well-suited system for network evolution studies.
Collapse
Affiliation(s)
- Jeroen B van der Steen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Fojtikova V, Stranava M, Vos MH, Liebl U, Hranicek J, Kitanishi K, Shimizu T, Martinkova M. Kinetic Analysis of a Globin-Coupled Histidine Kinase, AfGcHK: Effects of the Heme Iron Complex, Response Regulator, and Metal Cations on Autophosphorylation Activity. Biochemistry 2015. [PMID: 26212354 DOI: 10.1021/acs.biochem.5b00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The globin-coupled histidine kinase, AfGcHK, is a part of the two-component signal transduction system from the soil bacterium Anaeromyxobacter sp. Fw109-5. Activation of its sensor domain significantly increases its autophosphorylation activity, which targets the His183 residue of its functional domain. The phosphate group of phosphorylated AfGcHK is then transferred to the cognate response regulator. We investigated the effects of selected variables on the autophosphorylation reaction's kinetics. The kcat values of the heme Fe(III)-OH(-), Fe(III)-cyanide, Fe(III)-imidazole, and Fe(II)-O2 bound active AfGcHK forms were 1.1-1.2 min(-1), and their Km(ATP) values were 18.9-35.4 μM. However, the active form bearing a CO-bound Fe(II) heme had a kcat of 1.0 min(-1) but a very high Km(ATP) value of 357 μM, suggesting that its active site structure differs strongly from the other active forms. The Fe(II) heme-bound inactive form had kcat and Km(ATP) values of 0.4 min(-1) and 78 μM, respectively, suggesting that its low activity reflects a low affinity for ATP relative to that of the Fe(III) form. The heme-free form exhibited low activity, with kcat and Km(ATP) values of 0.3 min(-1) and 33.6 μM, respectively, suggesting that the heme iron complex is essential for high catalytic activity. Overall, our results indicate that the coordination and oxidation state of the sensor domain heme iron profoundly affect the enzyme's catalytic activity because they modulate its ATP binding affinity and thus change its kcat/Km(ATP) value. The effects of the response regulator and different divalent metal cations on the autophosphorylation reaction are also discussed.
Collapse
Affiliation(s)
| | | | - Marten H Vos
- §Laboratoire d'Optique et Biosciences, INSERM U1182-CNRS UMR7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- §Laboratoire d'Optique et Biosciences, INSERM U1182-CNRS UMR7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
41
|
Yan F, Fojtikova V, Man P, Stranava M, Martínková M, Du Y, Huang D, Shimizu T. Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure. Biometals 2015; 28:637-52. [PMID: 25804428 DOI: 10.1007/s10534-015-9847-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/13/2015] [Indexed: 02/05/2023]
Abstract
EcDOS is a heme-based O2-sensing phosphodiesterase in which O2 binding to the heme iron complex in the N-terminal domain substantially enhances catalysis toward cyclic-di-GMP, which occurs in the C-terminal domain. Here, we found that hydrogen sulfide enhances the catalytic activity of full-length EcDOS, possibly owing to the admixture of 6-coordinated heme Fe(III)-SH(-) and Fe(II)-O2 complexes generated during the reaction. Alanine substitution at Met95, the axial ligand for the heme Fe(II) complex, converted the heme Fe(III) complex into the heme Fe(III)-SH(-) complex, but the addition of Na2S did not further reduce it to the heme Fe(II) complex of the Met95Ala mutant, and no subsequent formation of the heme Fe(II)-O2 complex was observed. In contrast, a Met95His mutant formed a stable heme Fe(II)-O2 complex in response to the same treatment. An Arg97Glu mutant, containing a glutamate substitution at the amino acid that interacts with O2 in the heme Fe(II)-O2 complex, formed a stable heme Fe(II) complex in response to Na2S, but this complex failed to bind O2. Interestingly, the addition of Na2S promoted formation of verdoheme (oxygen-incorporated, modified protoporphyrin IX) in an Arg97Ile mutant. Catalytic enhancement by Na2S was similar for Met95 mutants and the wild type, but significantly lower for the Arg97 mutants. Thus, this study shows the first isolation of spectrometrically separated, stable heme Fe(III)-SH(-), heme Fe(II) and heme Fe(II)-O2 complexes of full-length EcDOS with Na2S, and confirms that external-ligand-bound, 6-coordinated heme Fe(III)-SH(-) or heme Fe(II)-O2 complexes critically contribute to the Na2S-induced catalytic enhancement of EcDOS.
Collapse
Affiliation(s)
- Fang Yan
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
43
|
Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J Proteomics 2015; 125:68-75. [DOI: 10.1016/j.jprot.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
|
44
|
Tang K, Knipp M, Liu BB, Cox N, Stabel R, He Q, Zhou M, Scheer H, Zhao KH, Gärtner W. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120. J Biol Chem 2015; 290:19067-80. [PMID: 26063806 DOI: 10.1074/jbc.m115.654087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.
Collapse
Affiliation(s)
- Kun Tang
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China, the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Markus Knipp
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany, Resolv, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany, and
| | - Bing-Bing Liu
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nicholas Cox
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Robert Stabel
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Qi He
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hugo Scheer
- the Department of Biologie I, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China,
| | - Wolfgang Gärtner
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany,
| |
Collapse
|
45
|
What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1101-12. [PMID: 25641558 DOI: 10.1016/j.bbapap.2015.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are essential cofactors in a myriad of metabolic pathways. Therefore, their biogenesis is tightly regulated across a variety of organisms and environmental conditions. In Gram-negative bacteria, two pathways - ISC and SUF - concur for maintaining intracellular iron-sulfur cluster balance. Recently, the mechanism of iron-sulfur cluster biosynthesis regulation by IscR, an iron-sulfur cluster-containing regulator encoded by the isc operon, was found to be conserved in some Gram-positive bacteria. Belonging to the Rrf2 family of transcriptional regulators, IscR displays a single helix-turn-helix DNA-binding domain but is able to recognize two distinct DNA sequence motifs, switching its specificity upon cluster ligation. This review provides an overview of gene regulation by iron-sulfur cluster-containing sensors, in the light of the recent structural characterization of cluster-less free and DNA-bound IscR, which provided insights into the molecular mechanism of nucleotide sequence recognition and discrimination of this unique transcription factor. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
46
|
Oliveira MC, Teixeira RD, Andrade MO, Pinheiro GMS, Ramos CHI, Farah CS. Cooperative substrate binding by a diguanylate cyclase. J Mol Biol 2014; 427:415-32. [PMID: 25463434 DOI: 10.1016/j.jmb.2014.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo.
Collapse
Affiliation(s)
- Maycon C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Maxuel O Andrade
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil
| | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-070, Brazil.
| |
Collapse
|
47
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
48
|
Crack JC, Green J, Thomson AJ, Brun NEL. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide. Acc Chem Res 2014; 47:3196-205. [PMID: 25262769 DOI: 10.1021/ar5002507] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously recognized. This remarkable feature suggested that the original [4Fe-4S] cluster can be restored using persulfide as the source of sulfide ion. We have demonstrated that only iron and a source of electrons are required to promote efficient conversion back from the [2Fe-2S] to the [4Fe-4S] form. We propose this as a novel in vivo repair mechanism that does not require the intervention of an iron-sulfur cluster biogenesis pathway. A number of iron-sulfur regulators have evolved to function as sensors of NO. Although it has long been known that the iron-sulfur clusters of many phylogenetically unrelated proteins are vulnerable to attack by NO, our recent studies of Wbl proteins and FNR have provided new insights into the mechanism of cluster nitrosylation, which overturn the commonly accepted view that the product is solely a mononuclear iron dinitrosyl complex (known as a DNIC). The major reaction is a rapid, multiphase process involving stepwise addition of up to eight NO molecules per [4Fe-4S] cluster. The major iron nitrosyl product is EPR silent and has optical characteristics similar to Roussin's red ester, [Fe2(NO)4(RS)2] (RRE), although a species similar to Roussin's black salt, [Fe4(NO)7(S)3](-) (RBS) cannot be ruled out. A major future challenge will be to clarify the nature of these species.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jeffrey Green
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J. Thomson
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
49
|
Henkel SG, Beek AT, Steinsiek S, Stagge S, Bettenbrock K, de Mattos MJT, Sauter T, Sawodny O, Ederer M. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions. PLoS One 2014; 9:e107640. [PMID: 25268772 PMCID: PMC4182436 DOI: 10.1371/journal.pone.0107640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 01/05/2023] Open
Abstract
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
Collapse
Affiliation(s)
| | - Alexander Ter Beek
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sonja Steinsiek
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Stefan Stagge
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Katja Bettenbrock
- Experimental Systems Biology, Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - M. Joost Teixeira de Mattos
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Sauter
- Life Science Research Unit, Université du Luxembourg, Luxembourg, Luxembourg
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
50
|
Kohlmann Y, Pohlmann A, Schwartz E, Zühlke D, Otto A, Albrecht D, Grimmler C, Ehrenreich A, Voigt B, Becher D, Hecker M, Friedrich B, Cramm R. Coping with Anoxia: A Comprehensive Proteomic and Transcriptomic Survey of Denitrification. J Proteome Res 2014; 13:4325-38. [DOI: 10.1021/pr500491r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yvonne Kohlmann
- Institut
für Biologie, Humboldt-Universität zu Berlin, Chausseestraße
117, 10115 Berlin, Germany
| | - Anne Pohlmann
- Institut
für Biologie, Humboldt-Universität zu Berlin, Chausseestraße
117, 10115 Berlin, Germany
| | - Edward Schwartz
- Institut
für Biologie, Humboldt-Universität zu Berlin, Chausseestraße
117, 10115 Berlin, Germany
| | - Daniela Zühlke
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Andreas Otto
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Dirk Albrecht
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Christina Grimmler
- Forschungsstelle für Nahrungsmittelqualität der Universität Bayreuth, 95326 Kulmbach, Germany
| | - Armin Ehrenreich
- Lehrstuhl
für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße
4, 85354 Freising, Germany
| | - Birgit Voigt
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Dörte Becher
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Michael Hecker
- Institut
für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße
15, 17489 Greifswald, Germany
| | - Bärbel Friedrich
- Institut
für Biologie, Humboldt-Universität zu Berlin, Chausseestraße
117, 10115 Berlin, Germany
| | - Rainer Cramm
- Institut
für Biologie, Humboldt-Universität zu Berlin, Chausseestraße
117, 10115 Berlin, Germany
| |
Collapse
|