1
|
Lequime S. The sociality continuum of viruses: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1568-1570. [PMID: 37975506 DOI: 10.1111/jeb.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Déjosez M, Marin A, Hughes GM, Morales AE, Godoy-Parejo C, Gray JL, Qin Y, Singh AA, Xu H, Juste J, Ibáñez C, White KM, Rosales R, Francoeur NJ, Sebra RP, Alcock D, Volkert TL, Puechmaille SJ, Pastusiak A, Frost SDW, Hiller M, Young RA, Teeling EC, García-Sastre A, Zwaka TP. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell 2023; 186:957-974.e28. [PMID: 36812912 PMCID: PMC10085545 DOI: 10.1016/j.cell.2023.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.
Collapse
Affiliation(s)
- Marion Déjosez
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | - Arturo Marin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariadna E Morales
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Carlos Godoy-Parejo
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jonathan L Gray
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Yiren Qin
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Arun A Singh
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Hui Xu
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Javier Juste
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain; CIBER Epidemiology and Public Health, CIBERESP, Madrid, Spain
| | - Carlos Ibáñez
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Genomics, New York, NY, USA
| | - Dominic Alcock
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Thomas L Volkert
- Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | | | - Andrzej Pastusiak
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA
| | - Simon D W Frost
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine and the Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA.
| |
Collapse
|
3
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
4
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
5
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
6
|
Padariya M, Kalathiya U, Mikac S, Dziubek K, Tovar Fernandez MC, Sroka E, Fahraeus R, Sznarkowska A. Viruses, cancer and non-self recognition. Open Biol 2021; 11:200348. [PMID: 33784856 PMCID: PMC8061760 DOI: 10.1098/rsob.200348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Maria C. Tovar Fernandez
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Ewa Sroka
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Building 6M, 901 85 Umeå, Sweden
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
7
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
8
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities. J Mol Evol 2015; 80:305-18. [PMID: 26014757 DOI: 10.1007/s00239-015-9683-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
In the early 1970s, Manfred Eigen and colleagues developed the quasispecies model (qs) for the population-based origin of RNAs representing the early genetic code. The Eigen idea is basically that a halo of mutants is generated by error-prone replication around the master fittest type which will behave similarly as a biological population. But almost from the start, very interesting and unexpected observations were made regarding competition versus co-operation which suggested more complex interactions. It thus became increasingly clear that although viruses functioned similar to biological species, their behavior was much more complex than the original theory could explain, especially adaptation without changing the consensus involving minority populations. With respect to the origin of natural codes, meaning, and code-use in interactions (communication), it also became clear that individual fittest type-based mechanisms were likewise unable to explain the origin of natural codes such as the genetic code with their context- and consortia-dependence (pragmatic nature). This, instead, required the participation of groups of agents competent in the code and able to edit code because natural codes do not code themselves. Three lines of inquiry, experimental virology, quasispecies theory, and the study of natural codes converged to indicate that consortia of co-operative RNA agents such as viruses must be involved in the fitness of RNA and its involvement in communication, i.e., code-competent interactions. We called this co-operative form quasispecies consortia (qs-c). They are the essential agents that constitute the possibility of evolution of biological group identity. Finally, the basic interactional motifs for the emergence of group identity, communication, and co-operation-together with its opposing functions-are explained by the "Gangen" hypothesis.
Collapse
|
10
|
Villarreal LP. Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N Y Acad Sci 2014; 1341:25-34. [PMID: 25376951 DOI: 10.1111/nyas.12565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lytic viruses were thought to kill the most numerous host (i.e., kill the winner). But persisting viruses/defectives can also protect against viruses, especially in a ubiquitous virosphere. In 1991, Yarmolinsky et al. discovered the addiction modules of P1 phage, in which opposing toxic and protective functions stabilize persistence. Subsequently, I proposed that lytic and persisting cryptic virus also provide addiction modules that promote group identity. In eukaryotes (and the RNA world), a distinct RNA virus-host relationship exists. Retrovirurses/retroposons are major contributors to eukaryotic genomes. Eukaryotic complexity appears to be mostly mediated by regulatory complexity involving noncoding retroposon-derived RNA. RNA viruses evolve via quasispecies, which contain cooperating, minority, and even opposing RNA types. Quasispecies can also demonstrate group preclusion (e.g., hepatitis C). Stem-loop RNA domains are found in long terminal repeats (and viral RNA) and mediate viral regulation/identity. Thus, stem-loop RNAs may be ancestral regulators. I consider the RNA (ribozyme) world scenario from the perspective of addiction modules and cooperating quasispecies (i.e., subfunctional agents that establish group identity). Such an RNA collective resembles a "gang" but requires the simultaneous emergence of endonuclease, ligase, cooperative catalysis, group identity, and history markers (RNA). I call such a collective a gangen (pathway to gang) needed for life to emerge.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, California
| |
Collapse
|
11
|
Burke GR, Thomas SA, Eum JH, Strand MR. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog 2013; 9:e1003348. [PMID: 23671417 PMCID: PMC3649998 DOI: 10.1371/journal.ppat.1003348] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/23/2013] [Indexed: 11/24/2022] Open
Abstract
Viruses are usually thought to form parasitic associations with hosts, but all members of the family Polydnaviridae are obligate mutualists of insects called parasitoid wasps. Phylogenetic data founded on sequence comparisons of viral genes indicate that polydnaviruses in the genus Bracovirus (BV) are closely related to pathogenic nudiviruses and baculoviruses. However, pronounced differences in the biology of BVs and baculoviruses together with high divergence of many shared genes make it unclear whether BV homologs still retain baculovirus-like functions. Here we report that virions from Microplitis demolitor bracovirus (MdBV) contain multiple baculovirus-like and nudivirus-like conserved gene products. We further show that RNA interference effectively and specifically knocks down MdBV gene expression. Coupling RNAi knockdown methods with functional assays, we examined the activity of six genes in the MdBV conserved gene set that are known to have essential roles in transcription (lef-4, lef-9), capsid assembly (vp39, vlf-1), and envelope formation (p74, pif-1) during baculovirus replication. Our results indicated that MdBV produces a baculovirus-like RNA polymerase that transcribes virus structural genes. Our results also supported a conserved role for vp39, vlf-1, p74, and pif-1 as structural components of MdBV virions. Additional experiments suggested that vlf-1 together with the nudivirus-like gene int-1 also have novel functions in regulating excision of MdBV proviral DNAs for packaging into virions. Overall, these data provide the first experimental insights into the function of BV genes in virion formation. Microorganisms form symbiotic associations with animals and plants that range from parasitic (pathogens) to beneficial (mutualists). Although numerous examples of obligate, mutualistic bacteria, fungi, and protozoans exist, viruses are almost always considered to be pathogens. An exception is the family Polydnaviridae, which consists of large DNA viruses that are obligate mutualists of insects called parasitoid wasps. Prior studies show that polydnaviruses in the genus Bracovirus evolved approximately 100 million years ago from a group of viruses called nudiviruses, which are themselves closely related to a large family of insect pathogens called baculoviruses. Polydnaviruses are thus of fundamental interest for understanding the processes by which viruses can evolve into mutualists. In this study we characterized the composition of virus particles from Microplitis demolitor bracovirus (MdBV) and conducted functional experiments to assess whether BV genes share similar functions with related essential baculovirus replication genes. Our results indicate that several genes in MdBV retain ancestral functions, but select other genes have novel functions unknown from baculoviruses. Our results also provide the first experimental data on the function of polydnavirus replication genes and enhance understanding of the similarities between these viruses and their pathogenic ancestors.
Collapse
Affiliation(s)
- Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (GRB); (MRS)
| | - Sarah A. Thomas
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Jai H. Eum
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (GRB); (MRS)
| |
Collapse
|
12
|
Bapteste E, Dupré J. Towards a processual microbial ontology. BIOLOGY & PHILOSOPHY 2013; 28:379-404. [PMID: 23487350 PMCID: PMC3591535 DOI: 10.1007/s10539-012-9350-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/17/2012] [Indexed: 05/26/2023]
Abstract
Standard microbial evolutionary ontology is organized according to a nested hierarchy of entities at various levels of biological organization. It typically detects and defines these entities in relation to the most stable aspects of evolutionary processes, by identifying lineages evolving by a process of vertical inheritance from an ancestral entity. However, recent advances in microbiology indicate that such an ontology has important limitations. The various dynamics detected within microbiological systems reveal that a focus on the most stable entities (or features of entities) over time inevitably underestimates the extent and nature of microbial diversity. These dynamics are not the outcome of the process of vertical descent alone. Other processes, often involving causal interactions between entities from distinct levels of biological organisation, or operating at different time scales, are responsible not only for the destabilisation of pre-existing entities, but also for the emergence and stabilisation of novel entities in the microbial world. In this article we consider microbial entities as more or less stabilised functional wholes, and sketch a network-based ontology that can represent a diverse set of processes including, for example, as well as phylogenetic relations, interactions that stabilise or destabilise the interacting entities, spatial relations, ecological connections, and genetic exchanges. We use this pluralistic framework for evaluating (i) the existing ontological assumptions in evolution (e.g. whether currently recognized entities are adequate for understanding the causes of change and stabilisation in the microbial world), and (ii) for identifying hidden ontological kinds, essentially invisible from within a more limited perspective. We propose to recognize additional classes of entities that provide new insights into the structure of the microbial world, namely "processually equivalent" entities, "processually versatile" entities, and "stabilized" entities.
Collapse
Affiliation(s)
- Eric Bapteste
- />UMR CNRS 7138, Université Pierre et Marie Curie, 75005 Paris, France
| | - John Dupré
- />ESRC Centre for Genomics in Society (Egenis), University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Peterhans E, Schweizer M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013; 41:39-51. [DOI: 10.1016/j.biologicals.2012.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
|
14
|
Living with the enemy: viral persistent infections from a friendly viewpoint. Curr Opin Microbiol 2012; 15:531-7. [PMID: 22770658 DOI: 10.1016/j.mib.2012.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 01/21/2023]
Abstract
Persistent infection is a situation of metastability in which the pathogen and the host coexist. A common outcome for viral infections, persistence is a widespread phenomenon through all kingdoms. With a clear benefit for the virus and/or the host at the population level, persistent infections act as modulators of the ecosystem. The origin of persistence being long time elusive, here we explore the concept of 'endogenization' of viral sequences with concomitant activation of the host immune pathways, as a main way to establish and maintain viral persistent infections. Current concepts on viral persistence mechanisms and biological role are discussed.
Collapse
|
15
|
Viruses and Host Evolution: Virus-Mediated Self Identity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:185-217. [DOI: 10.1007/978-1-4614-1680-7_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
|
17
|
Changes in population dynamics in mutualistic versus pathogenic viruses. Viruses 2011; 3:12-19. [PMID: 21994724 PMCID: PMC3187592 DOI: 10.3390/v3010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 12/31/2010] [Accepted: 01/06/2011] [Indexed: 12/13/2022] Open
Abstract
Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.
Collapse
|
18
|
Abstract
Although viruses are most often studied as pathogens, many are beneficial to their hosts, providing essential functions in some cases and conditionally beneficial functions in others. Beneficial viruses have been discovered in many different hosts, including bacteria, insects, plants, fungi and animals. How these beneficial interactions evolve is still a mystery in many cases but, as discussed in this Review, the mechanisms of these interactions are beginning to be understood in more detail.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
19
|
Abstract
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA.
| |
Collapse
|