1
|
Udaondo Z, Schilder KA, Blesa ARM, Tena-Garitaonaindia M, Mangana JC, Daddaoua A. Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks. Int J Mol Sci 2025; 26:4677. [PMID: 40429820 PMCID: PMC12112638 DOI: 10.3390/ijms26104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidin, 18008 Granada, Spain
| | - Kelsey Aguirre Schilder
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Ana Rosa Márquez Blesa
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
| | - José Canto Mangana
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Pharmacy Services, A.S. Hospital de Poniente de Almería, 04700 El Ejido, Spain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy School, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (IBS), 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
2
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Grunfeld N, Levine E, Libby E. Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets. Mol Microbiol 2024; 122:152-164. [PMID: 38167835 PMCID: PMC11219531 DOI: 10.1111/mmi.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed "eukaryotic-like" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.
Collapse
Affiliation(s)
- Noam Grunfeld
- Department of Bioengineering, Northeastern University, Boston MA USA
| | - Erel Levine
- Department of Bioengineering, Northeastern University, Boston MA USA
- Department of Chemical Engineering, Northeastern University, Boston MA USA
| | - Elizabeth Libby
- Department of Bioengineering, Northeastern University, Boston MA USA
| |
Collapse
|
4
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Lee D, Lee Y, Hye Shin S, Min Choi S, Hyeon Lee S, Jeong S, Jang S, Kee JM. A simple protein histidine kinase activity assay for high-throughput inhibitor screening. Bioorg Chem 2023; 130:106232. [DOI: 10.1016/j.bioorg.2022.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
|
6
|
Jia X, Zhao K, Liu F, Lin J, Lin C, Chen J. Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster. Front Microbiol 2022; 13:1041146. [PMID: 36466667 PMCID: PMC9712742 DOI: 10.3389/fmicb.2022.1041146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 10/27/2023] Open
Abstract
Prodigiosin is a promising secondary metabolite mainly produced by Serratia marcescens. The production of prodigiosin by S. marcescens is regulated by different kinds of regulatory systems, including the EnvZ/OmpR system. In this study, we demonstrated that the regulatory factor OmpR positively regulated prodigiosin production in S. marcescens FZSF02 by directly binding to the promoter region of the prodigiosin biosynthesis cluster with a lacZ reporter assay and electrophoretic mobility shift assay (EMSA). The binding sequence with the pig promoter was identified by a DNase I footprinting assay. We further demonstrate that OmpR regulates its own expression by directly binding to the promoter region of envZ/ompR. For the first time, the regulatory mechanism of prodigiosin production by the transcriptional factor OmpR was revealed.
Collapse
Affiliation(s)
- Xianbo Jia
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Ke Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangchen Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenqiang Lin
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|
7
|
Pallegar P, Canuti M, Langille E, Peña-Castillo L, Lang AS. A Two-Component System Acquired by Horizontal Gene Transfer Modulates Gene Transfer and Motility via Cyclic Dimeric GMP. J Mol Biol 2020; 432:4840-4855. [PMID: 32634380 DOI: 10.1016/j.jmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is an important intracellular signaling molecule that affects diverse physiological processes in bacteria. The intracellular levels of c-di-GMP are controlled by proteins acting as diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that synthesize and degrade c-di-GMP, respectively. In the alphaproteobacterium Rhodobacter capsulatus, flagellar motility and gene exchange via production of the gene transfer agent RcGTA are regulated by c-di-GMP. One of the R. capsulatus proteins involved in this regulation is Rcc00620, which contains an N-terminal two-component system response regulator receiver (REC) domain and C-terminal DGC and PDE domains. We demonstrate that the enzymatic activity of Rcc00620 is regulated through the phosphorylation status of its REC domain, which is controlled by a cognate histidine kinase protein, Rcc00621. In this system, the phosphorylated form of Rcc00620 is active as a PDE enzyme and stimulates gene transfer and motility. In addition, we discovered that the rcc00620 and rcc00621 genes are present in only one lineage within the genus Rhodobacter and were acquired via horizontal gene transfer from a distantly related alphaproteobacterium in the order Sphingomonadales. Therefore, a horizontally acquired regulatory system regulates gene transfer in the recipient organism.
Collapse
Affiliation(s)
- Purvikalyan Pallegar
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Evan Langille
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Computer Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
8
|
Wang FF, Qian W. The roles of histidine kinases in sensing host plant and cell-cell communication signal in a phytopathogenic bacterium. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180311. [PMID: 30967026 DOI: 10.1098/rstb.2018.0311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has long been known that phytopathogenic bacteria react to plant-specific stimuli or environmental factors. However, how bacterial cells sense these environmental cues remains incompletely studied. Recently, three kinds of histidine kinases (HKs) were identified as receptors to perceive plant-associated or quorum-sensing signals. Among these kinases, HK VgrS detects iron depletion by binding to ferric iron via an ExxE motif, RpfC binds diffusible signal factor (DSF) by its N-terminal peptide and activates its autokinase activity through relaxation of autoinhibition, and PcrK specifically senses plant hormone-cytokinin and elicits bacterial responses to oxidative stress. These HKs are critical sensors that regulate the virulence of a Gram-negative bacterium, Xanthomonas campestris pv. campestris. Research progress on the signal perception of phytopathogenic bacterial HKs suggests that inter-kingdom signalling between host plants and pathogens controls pathogenesis and can be used as a potential molecular target to protect plants from bacterial diseases. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| |
Collapse
|
9
|
Göpel Y, Görke B. Interaction of lipoprotein QseG with sensor kinase QseE in the periplasm controls the phosphorylation state of the two-component system QseE/QseF in Escherichia coli. PLoS Genet 2018; 14:e1007547. [PMID: 30040820 PMCID: PMC6075780 DOI: 10.1371/journal.pgen.1007547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/03/2018] [Accepted: 07/08/2018] [Indexed: 01/26/2023] Open
Abstract
Histidine kinase QseE and response regulator QseF compose a two-component system in Enterobacteriaceae. In Escherichia coli K-12 QseF activates transcription of glmY and of rpoE from Sigma 54-dependent promoters by binding to upstream activating sequences. Small RNA GlmY and RpoE (Sigma 24) are important regulators of cell envelope homeostasis. In pathogenic Enterobacteriaceae QseE/QseF are required for virulence. In enterohemorrhagic E. coli QseE was reported to sense the host hormone epinephrine and to regulate virulence genes post-transcriptionally through employment of GlmY. The qseEGF operon contains a third gene, qseG, which encodes a lipoprotein attached to the inner leaflet of the outer membrane. Here, we show that QseG is essential and limiting for activity of QseE/QseF in E. coli K-12. Metabolic 32P-labelling followed by pull-down demonstrates that phosphorylation of the receiver domain of QseF in vivo requires QseE as well as QseG. Accordingly, QseG acts upstream and through QseE/QseF by stimulating activity of kinase QseE. 32P-labelling also reveals an additional phosphorylation in the QseF C-terminus of unknown origin, presumably at threonine/serine residue(s). Pulldown and two-hybrid assays demonstrate interaction of QseG with the periplasmic loop of QseE. A mutational screen identifies the Ser58Asn exchange in the periplasmic loop of QseE, which decreases interaction with QseG and concomitantly lowers QseE/QseF activity, indicating that QseG activates QseE by interaction. Finally, epinephrine is shown to have a moderate impact on QseE activity in E. coli K-12. Epinephrine slightly stimulates QseF phosphorylation and thereby glmY transcription, but exclusively during stationary growth and this requires both, QseE and QseG. Our data reveal a three-component signaling system, in which the phosphorylation state of QseE/QseF is governed by interaction with lipoprotein QseG in response to a signal likely derived from the cell envelope.
Collapse
Affiliation(s)
- Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories (MFPL), University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
10
|
Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almeida S, Barh D, Ghosh P, Silva A, Castro TLP, Azevedo V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front Microbiol 2017; 8:1878. [PMID: 29067003 PMCID: PMC5641358 DOI: 10.3389/fmicb.2017.01878] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The bacterial communities in a wide range of environmental niches sense and respond to numerous external stimuli for their survival. Primarily, a source they require to follow up this communication is the two-component signal transduction system (TCS), which typically comprises a sensor Histidine kinase for receiving external input signals and a response regulator that conveys a proper change in the bacterial cell physiology. For numerous reasons, TCSs have ascended as convincing targets for antibacterial drug design. Several studies have shown that TCSs are essential for the coordinated expression of virulence factors and, in some cases, for bacterial viability and growth. It has also been reported that the expression of antibiotic resistance determinants may be regulated by some TCSs. In addition, as a mode of signal transduction, phosphorylation of histidine in bacteria differs from normal serine/threonine and tyrosine phosphorylation in higher eukaryotes. Several studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this review, we list some of the characteristics of the bacterial TCSs and their involvement in virulence and antibiotic resistance. Furthermore, this review lists and discusses inhibitors that have been reported to target TCSs in pathogenic bacteria.
Collapse
Affiliation(s)
- Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed B. Jamal
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Syed S. Hassan
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Biochemistry Group, Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Paulo V. S. D. Carvalho
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sintia Almeida
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debmalya Barh
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Thiago L. P. Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Fatty acid DSF binds and allosterically activates histidine kinase RpfC of phytopathogenic bacterium Xanthomonas campestris pv. campestris to regulate quorum-sensing and virulence. PLoS Pathog 2017; 13:e1006304. [PMID: 28369120 PMCID: PMC5391125 DOI: 10.1371/journal.ppat.1006304] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/13/2017] [Accepted: 03/20/2017] [Indexed: 12/01/2022] Open
Abstract
As well as their importance to nutrition, fatty acids (FA) represent a unique group of quorum sensing chemicals that modulate the behavior of bacterial population in virulence. However, the way in which full-length, membrane-bound receptors biochemically detect FA remains unclear. Here, we provide genetic, enzymological and biophysical evidences to demonstrate that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, a medium-chain FA diffusible signal factor (DSF) binds directly to the N-terminal, 22 amino acid-length sensor region of a receptor histidine kinase (HK), RpfC. The binding event remarkably activates RpfC autokinase activity by causing an allosteric change associated with the dimerization and histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains. Six residues were found essential for sensing DSF, especially those located in the region adjoining to the inner membrane of cells. Disrupting direct DSF-RpfC interaction caused deficiency in bacterial virulence and biofilm development. In addition, two amino acids within the juxtamembrane domain of RpfC, Leu172 and Ala178, are involved in the autoinhibition of the RpfC kinase activity. Replacements of them caused constitutive activation of RpfC-mediated signaling regardless of DSF stimulation. Therefore, our results revealed a biochemical mechanism whereby FA activates bacterial HK in an allosteric manner, which will assist in future studies on the specificity of FA-HK recognition during bacterial virulence regulation and cell-cell communication. Besides roles in nutrition, lipids also function as important signals in the regulation of prokaryotic and eukaryotic cells. In bacteria, fatty acids are part of the language of cell-cell communication known as quorum sensing for a decade. However, how bacteria detect these signals and regulate virulence remains elusive. Here, we provide multiple evidences to show that a full-length receptor histidine kinase, RpfC, directly binds to a fatty acid-based signal factor using a short sensor region. This binding event stimulates RpfC autokinase activity by triggering conformational change in its catalytic region, which is critical in regulating bacterial quorum sensing and virulence. Our results confirm a long-outstanding assumption in cell signaling of phytobacteria, and provide a technical pipeline to analyze fatty acid-receptor interactions.
Collapse
|
12
|
Fernández I, Cornaciu I, Carrica MDC, Uchikawa E, Hoffmann G, Sieira R, Márquez JA, Goldbaum FA. Three-Dimensional Structure of Full-Length NtrX, an Unusual Member of the NtrC Family of Response Regulators. J Mol Biol 2017; 429:1192-1212. [PMID: 28088479 DOI: 10.1016/j.jmb.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
Bacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response. NtrX is a modular protein with REC, AAA+, and DNA-binding domains, an architecture that classifies it among the NtrC subfamily of RRs. However, it lacks the signature GAFTGA motif that is essential for activating transcription by the mechanism proposed for canonical members of this subfamily. In this article, we present the first crystal structure of full-length NtrX, which is also the first structure of a full-length NtrC-like RR with all the domains solved, showing that the protein is structurally similar to other members of the subfamily. We also report that NtrX binds nucleotides and the structures of the protein bound to ATP and ADP. Despite binding ATP, NtrX does not have ATPase activity and does not form oligomers in response to phosphorylation or nucleotide binding. We also identify a nucleotide sequence recognized by NtrX that allows it to bind to a promoter region that regulates its own transcription and to establish a negative feedback mechanism to modulate its expression. Overall, this article provides a detailed description of the NtrX RR and supports that it functions by a mechanism different to classical NtrC-like RRs.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Emiko Uchikawa
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guillaume Hoffmann
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - José Antonio Márquez
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
13
|
Agrawal R, Kumar V P, Ramanan H, Saini DK. FRET reveals multiple interaction states between two component signalling system proteins of M. tuberculosis. Biochim Biophys Acta Gen Subj 2016; 1860:1498-507. [PMID: 27102281 DOI: 10.1016/j.bbagen.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/03/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Two component signalling involves interaction between sensor kinase (SK) and response regulator (RR) proteins which depends on their phosphorylation status. METHODS In this study we report the development of an in vitro FRET assay for studying interaction between fluorescently tagged SK and RR proteins. RESULTS Using TCS proteins of Mycobacterium tuberculosis, we demonstrate that phosphorylation status of SK affects the SK-RR interaction, which varies from one TCS to another. The observation was strengthened by recordings from mutant SK and RR proteins. The assay retained the specificity/crosstalk potential of the participating proteins and reflected the inherent phosphotransfer potentials. CONCLUSIONS SK and RR proteins interact with each other in unphosphorylated state and the phosphorylation affects the interaction between SK and RR, which was reflected as reduction in FRET ratio. GENERAL SIGNIFICANCE A non-radioactive, in vitro FRET based assay is reported, which can be utilized for studying genome-wide partner screening, identifying crosstalk or specificity in TCSs.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Prem Kumar V
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Harini Ramanan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
14
|
Pannen D, Fabisch M, Gausling L, Schnetz K. Interaction of the RcsB Response Regulator with Auxiliary Transcription Regulators in Escherichia coli. J Biol Chem 2015; 291:2357-70. [PMID: 26635367 DOI: 10.1074/jbc.m115.696815] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
The Rcs phosphorelay is a two-component signal transduction system that is induced by cell envelope stress. RcsB, the response regulator of this signaling system, is a pleiotropic transcription regulator, which is involved in the control of various stress responses, cell division, motility, and biofilm formation. RcsB regulates transcription either as a homodimer or together with auxiliary regulators, such as RcsA, BglJ, and GadE in Escherichia coli. In this study, we show that RcsB in addition forms heterodimers with MatA (also known as EcpR) and with DctR. Our data suggest that the MatA-dependent transcription regulation is mediated by the MatA-RcsB heterodimer and is independent of RcsB phosphorylation. Furthermore, we analyzed the relevance of amino acid residues of the active quintet of conserved residues, and of surface-exposed residues for activity of RcsB. The data suggest that the activity of the phosphorylation-dependent dimers, such as RcsA-RcsB and RcsB-RcsB, is affected by mutation of residues in the vicinity of the phosphorylation site, suggesting that a phosphorylation-induced structural change modulates their activity. In contrast, the phosphorylation-independent heterodimers BglJ-RcsB and MatA-RcsB are affected by only very few mutations. Heterodimerization of RcsB with various auxiliary regulators and their differential dependence on phosphorylation add an additional level of control to the Rcs system that is operating at the output level.
Collapse
Affiliation(s)
- Derk Pannen
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Maria Fabisch
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Lisa Gausling
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Karin Schnetz
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| |
Collapse
|
15
|
Fernández I, Otero LH, Klinke S, Carrica MDC, Goldbaum FA. Snapshots of Conformational Changes Shed Light into the NtrX Receiver Domain Signal Transduction Mechanism. J Mol Biol 2015; 427:3258-3272. [DOI: 10.1016/j.jmb.2015.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/11/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
16
|
Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution. J Bacteriol 2015; 197:3294-306. [PMID: 26260457 DOI: 10.1128/jb.00436-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced in ackA null strains that accumulate acetyl phosphate, it persisted in pta ackA double null strains that cannot synthesize this compound and was observed also in narL(+) strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in an arcB barA double null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered the in vitro rates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition. IMPORTANCE Many bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is inhibited in part by the high interaction specificity between cognate sensor-response regulator pairs. This study shows that a relatively subtle missense change from Val to Ala nullifies cross talk inhibition, enabling at least two noncognate sensors to enforce an inappropriate output independently of the relevant input.
Collapse
|
17
|
Shankar M, Mohapatra SS, Biswas S, Biswas I. Gene Regulation by the LiaSR Two-Component System in Streptococcus mutans. PLoS One 2015; 10:e0128083. [PMID: 26020679 PMCID: PMC4447274 DOI: 10.1371/journal.pone.0128083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022] Open
Abstract
The LiaSR two-component signal transduction system regulates cellular responses to several environmental stresses, including those that induce cell envelope damages. Downstream regulons of the LiaSR system have been implicated in tolerance to acid, antibiotics and detergents. In the dental pathogen Streptococcus mutans, the LiaSR system is necessary for tolerance against acid, antibiotics, and cell wall damaging stresses during growth in the oral cavity. To understand the molecular mechanisms by which LiaSR regulates gene expression, we created a mutant LiaR in which the conserved aspartic acid residue (the phosphorylation site), was changed to alanine residue (D58A). As expected, the LiaR-D58A variant was unable to acquire the phosphate group and bind to target promoters. We also noted that the predicted LiaR-binding motif upstream of the lia operon does not appear to be well conserved. Consistent with this observation, we found that LiaR was unable to bind to the promoter region of lia; however, we showed that LiaR was able to bind to the promoters of SMU.753, SMU.2084 and SMU.1727. Based on sequence analysis and DNA binding studies we proposed a new 25-bp conserved motif essential for LiaR binding. Introducing alterations at fully conserved positions in the 25-bp motif affected LiaR binding, and the binding was dependent on the combination of positions that were altered. By scanning the S. mutans genome for the occurrence of the newly defined LiaR binding motif, we identified the promoter of hrcA (encoding a key regulator of the heat shock response) that contains a LiaR binding motif, and we showed that hrcA is negatively regulated by the LiaSR system. Taken together our results suggest a putative role of the LiaSR system in heat shock responses of S. mutans.
Collapse
Affiliation(s)
- Manoharan Shankar
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Saswat S. Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Phosphorylation is a ubiquitous protein post-translational modification, and the importance of phosphorylation of serine, threonine and tyrosine is well established. What is lesser known is that almost all heteroatom-containing amino acids can be phosphorylated and, among these, histidine, aspartate and cysteine have well established roles in bacterial signalling pathways. The first of these, phosphohistidine, is the most unusual in that it is labile under many conditions used to study proteins in vitro and can exist as two different isomers. In the present short review, we highlight the chemical challenges that this modification presents and the manner in which chemical synthesis has been used to identify and mimic the modification in proteins.
Collapse
|
19
|
Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 2013; 5:1265-84. [DOI: 10.4155/fmc.13.58] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a considerable and increasing global problem. The development of new antibiotics is not keeping pace with the rapid evolution of resistance to almost all clinically available drugs, and novel strategies are required to fight bacterial infections. One such strategy is the control of pathogenic behaviors, as opposed to simply killing bacteria. Bacterial two-component system (TCS) signal transduction pathways control many pathogenic bacterial behaviors, such as virulence, biofilm formation and antibiotic resistance and are, therefore, an attractive target for the development of new drugs. This review presents an overview of TCS that are potential targets for such a strategy, describes small-molecules inhibitors of TCS identified to date and discusses assays for the identification of novel inhibitors. The future perspective for the identification and use of inhibitors of TCS to potentially provide new therapeutic options for the treatment of drug-resistant bacterial infections is discussed.
Collapse
|
20
|
Kaimer C, Zusman DR. Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. Mol Microbiol 2013; 88:740-53. [PMID: 23551551 DOI: 10.1111/mmi.12219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 12/21/2022]
Abstract
The life cycle of Myxococcus xanthus includes co-ordinated group movement and fruiting body formation, and requires directed motility and controlled cell reversals. Reversals are achieved by inverting cell polarity and re-organizing many motility proteins. The Frz chemosensory pathway regulates the frequency of cell reversals. While it has been established that phosphotransfer from the kinase FrzE to the response regulator FrzZ is required, it is unknown how phosphorylated FrzZ, the putative output of the pathway, targets the cell polarity axis. In this study, we used Phos-tag SDS-PAGE to determine the cellular level of phospho-FrzZ under different growth conditions and in Frz signalling mutants. We detected consistent FrzZ phosphorylation, albeit with a short half-life, in cells grown on plates, but not from liquid culture. The available pool of phospho-FrzZ correlated with reversal frequencies, with higher levels found in hyper-reversing mutants. Phosphorylation was not detected in hypo-reversing mutants. Fluorescence microscopy revealed that FrzZ is recruited to the leading cell pole upon phosphorylation and switches to the opposite pole during reversals. These results are consistent with the hypothesis that the Frz pathway modulates reversal frequency through a localized response regulator that targets cell polarity regulators at the leading cell pole.
Collapse
Affiliation(s)
- Christine Kaimer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
21
|
Immediate and heterogeneous response of the LiaFSR two-component system of Bacillus subtilis to the peptide antibiotic bacitracin. PLoS One 2013; 8:e53457. [PMID: 23326432 PMCID: PMC3543457 DOI: 10.1371/journal.pone.0053457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. METHODOLOGY AND PRINCIPAL FINDINGS Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced 'OFF' state into the bacitracin-induced 'ON' state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the 'ON' state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. CONCLUSION The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase.
Collapse
|
22
|
Abstract
GAPDH interacts with a plethora of diverse cellular proteins. The network of interacting partners, or interactome, is presented for GAPDH with the interacting molecules grouped into specific functional and structural categories. By organizing the binding partners in this way, certain common structural features are beginning to surface, such as acidic dipeptide sequences that are found in several of these binding proteins. Additionally, the consensus sequences for target polynucleotides are being brought to light. The categories, which are presented according to function, offer an opportunity for research into the corresponding structural correlates to these interactions. Recent discoveries of interacting proteins have revealed novel relationships that are generating emerging mechanisms. Proteins that are associated with age-related neurodegenerative diseases appear to be particularly prone to binding GAPDH, suggesting that GAPDH may be playing a role in these diseases. Neurodegenerative diseases that are discussed are the conformational diseases of aging, suggesting that GAPDH may be a global sensor for cellular conformational stress. In addition to GAPDH's oxidoreductase activity, several other enzymatic functions have been discovered, including peroxidase, nitrosylase, mono-ADP-ribosylase and kinase activities.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
23
|
Probing kinase and phosphatase activities of two-component systems in vivo with concentration-dependent phosphorylation profiling. Proc Natl Acad Sci U S A 2012; 110:672-7. [PMID: 23267085 DOI: 10.1073/pnas.1214587110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quantitative analyses of protein concentrations, modifications and activities in their native environments are playing an increasingly vital role in unraveling the general principles underlying signal transduction pathways. The prevalent bacterial two-component systems (TCSs) use a central phosphotransfer for signaling; however, in vivo characterization of the kinase and phosphatase activities of TCS proteins is often limited by traditional transcriptional reporter assays and complicated by simultaneous actions of multiple TCS activities. Here, we report a strategy that combines concentration-dependent phosphorylation profiling and mathematical modeling to characterize the cellular activities of the archetype Escherichia coli PhoR/PhoB system. Phosphorylation of the response regulator (RR) PhoB has been found to be dependent on the total concentrations of PhoB/PhoR and saturated at high concentrations. The relationship between RR phosphorylation and total concentrations has been defined by the modeling of the kinase and phosphatase reactions and quantified to derive the biochemical parameters of the PhoR/PhoB system in vivo. In a further test of this approach on a PhoB mutant, PhoB(F20D), it proved highly effective in exploring the mechanistic differences of TCSs that are not revealed by traditional reporter assays. Measurement of biochemical parameters for PhoB(F20D) led to the discovery that a weaker interaction between the histidine sensor kinase and RR could result in a higher and nonrobust phosphorylation due to diminished phosphatase activities.
Collapse
|
24
|
Daddaoua A, Fillet S, Fernández M, Udaondo Z, Krell T, Ramos JL. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One 2012; 7:e39390. [PMID: 22844393 PMCID: PMC3402500 DOI: 10.1371/journal.pone.0039390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad) and P(kgu) for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA) promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu) and P(gad) promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu) and P(gad) promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA) promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.
Collapse
Affiliation(s)
| | - Sandy Fillet
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | | | - Zulema Udaondo
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | - Juan L. Ramos
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| |
Collapse
|
25
|
Probing the ArcA regulon in the rumen bacterium Mannheimia succiniciproducens by genome-wide expression profiling. J Microbiol 2012; 50:665-72. [DOI: 10.1007/s12275-012-2007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/17/2012] [Indexed: 01/02/2023]
|
26
|
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K. The microbial opsin family of optogenetic tools. Cell 2012; 147:1446-57. [PMID: 22196724 PMCID: PMC4166436 DOI: 10.1016/j.cell.2011.12.004] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/17/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022]
Abstract
The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines.
Collapse
Affiliation(s)
- Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stratmann T, Pul Ü, Wurm R, Wagner R, Schnetz K. RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol Microbiol 2012; 83:1109-23. [DOI: 10.1111/j.1365-2958.2012.07993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Zahid N, Zulfiqar S, Shakoori AR. Functional analysis of cus operon promoter of Klebsiella pneumoniae using E. coli lacZ assay. Gene 2011; 495:81-8. [PMID: 22230226 DOI: 10.1016/j.gene.2011.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/01/2011] [Accepted: 12/15/2011] [Indexed: 11/24/2022]
Abstract
The transcriptional fusion of reporter lacZ gene with cusRS regulatory promoter of cus operon of Klebsiella pneumoniae enabled us to analyze the inductive effect of copper on promoter via lacZ assay. The stimulus response curve of promoter to a range of copper metal concentrations indicated a normal sigmoidal response profile with apparent Hill coefficient 1.0. There was a positive correlation of promoter response to the increasing concentration of copper in the medium. AC(50) value of copper was calculated to be 1mM, whereas the promoter response was exponential beyond 1mM and up to 2.5mM concentration. The promoter activity did not increase exponentially in copper concentration higher than 2.5mM. The promoter PcusRS requires two chromosomally encoded regulatory proteins, CusS and CusR, in trans for maximal in vitro activation. The PcusRS regulatory promoter sequence also contained regulatory -10 and -35 boxes along with CusR binding motif. The results supported the concept of cus operon regulation as an essential mechanism for maintaining the cellular homeostasis at very high (e.g. 3mM), and even toxic copper concentrations.
Collapse
Affiliation(s)
- Nageena Zahid
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | | | | |
Collapse
|
29
|
Joly N, Zhang N, Buck M, Zhang X. Coupling AAA protein function to regulated gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:108-16. [PMID: 21906631 DOI: 10.1016/j.bbamcr.2011.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
AAA proteins (ATPases Associated with various cellular Activities) are involved in almost all essential cellular processes ranging from DNA replication, transcription regulation to protein degradation. One class of AAA proteins has evolved to adapt to the specific task of coupling ATPase activity to activating transcription. These upstream promoter DNA bound AAA activator proteins contact their target substrate, the σ(54)-RNA polymerase holoenzyme, through DNA looping, reminiscent of the eukaryotic enhance binding proteins. These specialised macromolecular machines remodel their substrates through ATP hydrolysis that ultimately leads to transcriptional activation. We will discuss how AAA proteins are specialised for this specific task.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
30
|
Perry J, Koteva K, Wright G. Receptor domains of two-component signal transduction systems. MOLECULAR BIOSYSTEMS 2011; 7:1388-98. [PMID: 21347487 DOI: 10.1039/c0mb00329h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.
Collapse
Affiliation(s)
- Julie Perry
- MG DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main St W, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
31
|
Kobir A, Shi L, Boskovic A, Grangeasse C, Franjevic D, Mijakovic I. Protein phosphorylation in bacterial signal transduction. Biochim Biophys Acta Gen Subj 2011; 1810:989-94. [PMID: 21266190 DOI: 10.1016/j.bbagen.2011.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Protein phosphorylation has emerged as one of the major post translational modifications in bacteria, involved in regulating a myriad of physiological processes. In a complex and dynamic system such as the bacterial cell, connectivity of its components accounts for a number of emergent properties. This article is part of a Special Issue entitled: Systems Biology of Microorganisms. SCOPE OF REVIEW This review focuses on the implications of bacterial protein phosphorylation in cell signaling and regulation and highlights the connections and cross talk between various signaling pathways: bacterial two-component systems and serine/threonine kinases, but also the interference between phosphorylation and other post-translational modifications (methylation and acetylation). MAJOR CONCLUSIONS Recent technical developments in high accuracy mass spectrometry have profoundly transformed proteomics, and today exhaustive site-specific phosphoproteomes are available for a number of bacterial species. Nevertheless, prediction of phosphorylation sites remains the main guide for many researchers, so we discuss the characteristics, limits and advantages of available phosphorylation predictors. GENERAL SIGNIFICANCE The advent of quantitative phosphoproteomics has brought the field on the doorstep of systems biology, but a number of challenges remain before the bacterial phosphorylation networks can be efficiently modeled and their physiological role understood. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.
Collapse
Affiliation(s)
- Ahasanul Kobir
- Micalis, AgroParisTech-INRA UMR 1319, Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
32
|
Göpel Y, Lüttmann D, Heroven AK, Reichenbach B, Dersch P, Görke B. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res 2010; 39:1294-309. [PMID: 20965974 PMCID: PMC3045617 DOI: 10.1093/nar/gkq986] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Small RNAs GlmY and GlmZ compose a cascade that feedback-regulates synthesis of enzyme GlmS in Enterobacteriaceae. Here, we analyzed the transcriptional regulation of glmY/glmZ from Yersinia pseudotuberculosis, Salmonella typhimurium and Escherichia coli, as representatives for other enterobacterial species, which exhibit similar promoter architectures. The GlmY and GlmZ sRNAs of Y. pseudotuberculosis are transcribed from σ54-promoters that require activation by the response regulator GlrR through binding to three conserved sites located upstream of the promoters. This also applies to glmY/glmZ of S. typhimurium and glmY of E. coli, but as a difference additional σ70-promoters overlap the σ54-promoters and initiate transcription at the same site. In contrast, E. coli glmZ is transcribed from a single σ70-promoter. Thus, transcription of glmY and glmZ is controlled by σ54 and the two-component system GlrR/GlrK (QseF/QseE) in Y. pseudotuberculosis and presumably in many other Enterobacteria. However, in a subset of species such as E. coli this relationship is partially lost in favor of σ70-dependent transcription. In addition, we show that activity of the σ54-promoter of E. coli glmY requires binding of the integration host factor to sites upstream of the promoter. Finally, evidence is provided that phosphorylation of GlrR increases its activity and thereby sRNA expression.
Collapse
Affiliation(s)
- Yvonne Göpel
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J Bacteriol 2010; 192:6456-64. [PMID: 20952573 DOI: 10.1128/jb.00807-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcsB is the response regulator of the complex Rcs two-component system, which senses perturbations in the outer membrane and peptidoglycan layer. BglJ is a transcriptional regulator whose constitutive expression causes activation of the H-NS- and StpA-repressed bgl (aryl-β,D-glucoside) operon in Escherichia coli. RcsB and BglJ both belong to the LuxR-type family of transcriptional regulators with a characteristic C-terminal DNA-binding domain. Here, we show that BglJ and RcsB interact and form heterodimers that presumably bind upstream of the bgl promoter, as suggested by mutation of a sequence motif related to the consensus sequence for RcsA-RcsB heterodimers. Heterodimerization of BglJ-RcsB and relief of H-NS-mediated repression of bgl by BglJ-RcsB are apparently independent of RcsB phosphorylation. In addition, we show that LeuO, a pleiotropic LysR-type transcriptional regulator, likewise binds to the bgl upstream regulatory region and relieves repression of bgl independently of BglJ-RcsB. Thus, LeuO can affect bgl directly, as shown here, and indirectly by activating the H-NS-repressed yjjQ-bglJ operon, as shown previously. Taken together, heterodimer formation of RcsB and BglJ expands the role of the Rcs two-component system and the network of regulators affecting the bgl promoter.
Collapse
|