1
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Jimmy S Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robin M Daugherty
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - David O Wood
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
2
|
Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer. mBio 2019; 10:mBio.01343-19. [PMID: 31387908 PMCID: PMC6686042 DOI: 10.1128/mbio.01343-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis is a widely applied and powerful genetic tool for the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a clinically significant, obligate intracellular bacterium for which many conventional genetic tools and capabilities have been developed only recently. This report describes the successful development and application of a Himar transposon mutagenesis system for generating single-insertion mutant clones of C. trachomatis This system was used to generate a pool of 105 transposon mutant clones that included insertions in genes encoding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis 148 [ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of Tn mutant clones was evaluated for growth differences under cell culture conditions, revealing that most phenocopied the parental strain; however, some strains displayed subtle and yet significant differences in infectious progeny production and inclusion sizes. Bacterial burden studies in mice also supported the idea that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for these infections. The ct339 gene encodes a hypothetical protein with limited sequence similarity to the DNA-uptake protein ComEC. A transposon insertion in ct339 rendered the mutant incapable of DNA acquisition during recombination experiments. This observation, along with in situ structural analysis, supports the idea that this protein is playing a role in the fundamental process of lateral gene transfer similar to that of ComEC. In all, the development of the Himar transposon system for Chlamydia provides an effective genetic tool for further discovery of genes that are important for basic biology and pathogenesis aspects.IMPORTANCE Chlamydia trachomatis infections have an immense impact on public health; however, understanding the basic biology and pathogenesis of this organism has been stalled by the limited repertoire of genetic tools. This report describes the successful adaptation of an important tool that has been lacking in Chlamydia studies: transposon mutagenesis. This advance enabled the generation of 105 insertional mutants, demonstrating that numerous gene products are not essential for in vitro growth. Mammalian infections using these mutants revealed that several gene products are important for infections in vivo Moreover, this tool enabled the investigation and discovery of a gene critical for lateral gene transfer; a process fundamental to the evolution of bacteria and likely for Chlamydia as well. The development of transposon mutagenesis for Chlamydia has broad impact for the field and for the discovery of genes associated with selected phenotypes, providing an additional avenue for the discovery of molecular mechanisms used for pathogenesis and for a more thorough understanding of this important pathogen.
Collapse
|
3
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
4
|
The Rickettsial Ankyrin Repeat Protein 2 Is a Type IV Secreted Effector That Associates with the Endoplasmic Reticulum. mBio 2018; 9:mBio.00975-18. [PMID: 29946049 PMCID: PMC6020290 DOI: 10.1128/mbio.00975-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Strains of Rickettsia rickettsii, the tick-borne agent of Rocky Mountain spotted fever, vary considerably in virulence. Genomic comparisons of R. rickettsii strains have identified a relatively small number of genes divergent in an avirulent strain. Among these is one annotated as Rickettsia ankyrin repeat protein 2 (RARP-2). Homologs of RARP-2 are present in all strains of R. rickettsii, but the protein in the avirulent strain Iowa contains a large internal deletion relative to the virulent Sheila Smith strain. RARP-2 is secreted in a type IV secretion system-dependent manner and exposed to the host cell cytosol. RARP-2 of Sheila Smith colocalizes with multilamellar membranous structures bearing markers of the endoplasmic reticulum (ER), whereas the Iowa protein shows no colocalization with host cell organelles and evidence of proteolytic degradation is detected. Overexpression of Sheila Smith RARP-2 in R. rickettsii Iowa converts this avirulent strain’s typically nonlytic or opaque plaque type to a lytic plaque phenotype similar to that of the virulent Sheila Smith strain. Mutation of a predicted proteolytic active site of Sheila Smith RARP-2 abolished the lytic plaque phenotype but did not eliminate association with host membrane. RARP-2 is thus a type IV secreted effector and released from the rickettsiae into the host cytosol to modulate host processes during infection. Overexpression of Sheila Smith RARP-2 did not, however, restore the virulence of the Iowa strain in a guinea pig model, likely due to the multifactorial nature of rickettsial virulence. Members of the genus Rickettsia are obligate intracellular bacteria that exhibit a range of virulence from harmless endosymbionts of arthropods to the etiologic agents of severe disease. Despite the growing number of available genomes, little is known regarding virulence determinants of rickettsiae. Here, we have characterized an ankyrin repeat-containing protein, RARP-2, which differs between a highly virulent and an avirulent strain of R. rickettsii, the agent of Rocky Mountain spotted fever. RARP-2 is secreted by a type IV secretion system into the cytosol of the host cell, where it interacts with and manipulates the structure of the endoplasmic reticulum. RARP-2 from the avirulent strain is truncated by the loss of seven of 10 ankyrin repeat units but, although secreted, fails to alter ER structure. Recognition of those rickettsial factors associated with virulence will facilitate understanding of regional and strain-specific variation in severity of disease.
Collapse
|
5
|
A genetic system for targeted mutations to disrupt and restore genes in the obligate bacterium, Ehrlichia chaffeensis. Sci Rep 2017; 7:15801. [PMID: 29150636 PMCID: PMC5693922 DOI: 10.1038/s41598-017-16023-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
Obligate intracellular bacteria (obligates) belonging to Rickettsiales and Chlamydiales cause diseases in hundreds of millions of people worldwide and in many animal species. Lack of an efficient system for targeted mutagenesis in obligates remains a major impediment in understanding microbial pathogenesis. Challenges in creating targeted mutations may be attributed to essential nature of majority of the genes and intracellular replication dependence. Despite success in generating random mutations, a method that works well in creating mutations in specific genes of interest followed by complementation remains problematic for obligates and is a highly sought-after goal. We describe protocols to generate stable targeted mutations by allelic exchange in Ehrlichia chaffeensis, an obligate intracellular tick-borne bacterium responsible for human monocytic ehrlichiosis. Targeted mutations in E. chaffeensis were created to disrupt two genes, and also to restore one gene by another allelic exchange mutation leading to the restoration of transcription and protein expression from the inactivated gene and the recovered organisms also express mCherry, which distinguishes from the wild type. We expect that the methods developed are broadly applicable to other obligates, particularly to rickettsial pathogens, to routinely perform targeted mutations to enable studies focused on protein structure-function analyses, host-pathogen interactions and in developing vaccines.
Collapse
|
6
|
Gentil J, Hempel F, Moog D, Zauner S, Maier UG. Review: origin of complex algae by secondary endosymbiosis: a journey through time. PROTOPLASMA 2017; 254:1835-1843. [PMID: 28290059 DOI: 10.1007/s00709-017-1098-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/03/2017] [Indexed: 05/19/2023]
Abstract
Secondary endosymbiosis-the merging of two eukaryotic cells into one photosynthetic cellular unit-led to the evolution of ecologically and medically very important organisms. We review the biology of these organisms, starting from the first proposal of secondary endosymbiosis up to recent phylogenetic models on the origin of secondarily evolved protists. In addition, we discuss the organelle character of the symbionts based on morphological features, gene transfers from the symbiont into the host and re-import of nucleus-encoded plastid proteins. Finally, we hypothesize that secondary endosymbiosis is more than enslaving a eukaryotic, phototrophic cell, but reflects a complex interplay between host and symbiont, leading to the inseparability of the two symbiotic partners generating a cellular entity.
Collapse
Affiliation(s)
- J Gentil
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - F Hempel
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - D Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - S Zauner
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - U G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
8
|
Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions. Bioessays 2017. [DOI: 10.1002/bies.201700030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
10
|
Reinke AW, Troemel ER. The Development of Genetic Modification Techniques in Intracellular Parasites and Potential Applications to Microsporidia. PLoS Pathog 2015; 11:e1005283. [PMID: 26720003 PMCID: PMC4699923 DOI: 10.1371/journal.ppat.1005283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Aaron W. Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California-San Diego, San Diego, California, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California-San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Oki AT, Seidman D, Lancina MG, Mishra MK, Kannan RM, Yang H, Carlyon JA. Dendrimer-enabled transformation of Anaplasma phagocytophilum. Microbes Infect 2015; 17:817-22. [PMID: 26369714 PMCID: PMC4666749 DOI: 10.1016/j.micinf.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that causes the emerging infection, granulocytic anaplasmosis. While electroporation can transform A. phagocytophilum isolated from host cells, no method has been developed to transform it while growing inside the ApV (A. phagocytophilum-occupied vacuole). Polyamidoamine (PAMAM) dendrimers, well-defined tree-branched macromolecules used for gene therapy and nucleic acid delivery into mammalian cells, were recently shown to be effective in transforming Chlamydia spp. actively growing in host cells. We determined if we could adapt a similar system to transform A. phagocytophilum. Incubating fluorescently labeled PAMAM dendrimers with infected host cells resulted in fluorescein-positive ApVs. Incubating infected host cells or host cell-free A. phagocytophilum organisms with dendrimers complexed with pCis GFPuv-SS Himar A7 plasmid, which carries a Himar1 transposon cassette encoding GFPuv and spectinomycin/streptomycin resistance plus the Himar1 transposase itself, resulted in GFP-positive, antibiotic resistant bacteria. Yet, transformation efficiencies were low. The transformed bacterial populations could only be maintained for a few passages, likely due to random Himar1 cassette-mediated disruption of A. phagocytophilum genes required for fitness. Nonetheless, these results provide proof of principle that dendrimers can deliver exogenous DNA into A. phagocytophilum, both inside and outside of host cells.
Collapse
Affiliation(s)
- Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States
| | - Michael G Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, P.O. Box 843067, Richmond, VA 23284-3067, United States
| | - Manoj K Mishra
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, United States
| | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, P.O. Box 843067, Richmond, VA 23284-3067, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA, 23298-0678, United States.
| |
Collapse
|
12
|
Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 2015; 8:570. [PMID: 26471806 PMCID: PMC4606545 DOI: 10.1186/s13104-015-1542-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022] Open
Abstract
Background Chlamydia spp. are obligate, intracellular bacteria that infect humans and animals. Research on these important pathogens has been hindered due to a paucity of genetic tools. We recently adapted a group II intron (GII) mutagenesis platform for creation of ampicillin-selectable gene insertions in C. trachomatis L2. The aims of this study were: (1) to assess the stability of the intron-insertion in an in vivo infection model to gauge the efficacy of this genetic tool for long term animal studies and (2) to expand upon the utility of the method by validating a second selection marker (aadA, conferring spectinomycin resistance) for mutant construction. Results Intron stability was assessed using a mouse vaginal tract infection model with a C. trachomatis L2 434/Bu incA::GII(bla) mutant. Infections were performed in the absence of selection and isolates shed into the vaginal tract were isolated and expanded in cell culture (also without selection). PCR and inclusion phenotype analysis indicated that the intron was stable for at least 27 days post-infection (at which point bacteria were no longer recovered from the mouse). The aminoglycoside 3′ adenyltransferase (aadA) gene was used to create a spectinomycin-selectable GII intron, facilitating the construction of an incA::GII[aadA] C. trachomatis L2 insertion mutant. Both the GII(aadA) intron and our previously reported GII(bla) intron were then used to create an incA::GII(aadA), rsbV1::GII(bla) double mutant. Mutants were confirmed via PCR, sequencing, inclusion morphology (incA only), and western blot. Conclusions The stability of the intron-insertion during in vivo growth indicates that the GII-insertion mutants can be used to study pathogenesis using the well-established mouse infection model. In addition, the validation of an additional marker for mutagenesis in Chlamydia allows for gene complementation approaches and construction of targeted, double mutants in Chlamydia. The aadA marker also could be useful for other genetic methods. Collectively, our results expand upon the rapidly growing chlamydial genetic toolkit and will aid in the implementation of studies dissecting the contribution of individual genes to infection. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1542-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Lowden
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Laxmi Yeruva
- Departments of Pediatrics, Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Cayla M Johnson
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Anne K Bowlin
- Departments of Pediatrics, Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| |
Collapse
|
13
|
Clark TR, Noriea NF, Bublitz DC, Ellison DW, Martens C, Lutter EI, Hackstadt T. Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect Immun 2015; 83:1568-76. [PMID: 25644009 PMCID: PMC4363411 DOI: 10.1128/iai.03140-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/26/2015] [Indexed: 01/07/2023] Open
Abstract
Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. Strains of R. rickettsii differ dramatically in virulence. In a guinea pig model of infection, the severity of disease as assessed by fever response varies from the most virulent, Sheila Smith, to Iowa, which causes no fever. To identify potential determinants of virulence in R. rickettsii, the genomes of two additional strains were sequenced for comparison to known sequences (comparative genome sequencing [CGS]). R. rickettsii Morgan and R strains were compared to the avirulent R. rickettsii Iowa and virulent R. rickettsii Sheila Smith strains. The Montana strains Sheila Smith and R were found to be highly similar while the eastern strains Iowa and Morgan were most similar to each other. A major surface antigen, rickettsial outer membrane protein A (rOmpA), is severely truncated in the Iowa strain. The region of ompA containing 13 tandem repeats was sequenced, revealing only seven shared SNPs (four nonsynonymous) for R and Morgan strains compared to Sheila Smith, with an additional 17 SNPs identified in Morgan. Another major surface antigen and autotransporter, rOmpB, exhibits a defect in processing in the Iowa strain such that the beta fragment is not cleaved. Sequence analysis of ompB reveals identical sequences between Iowa and Morgan strains and between the R and Sheila Smith strains. The number of SNPs and insertions/deletions between sequences of the two Montana strains and the two eastern strains is low, thus narrowing the field of possible virulence factors.
Collapse
Affiliation(s)
- Tina R Clark
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Nicholas F Noriea
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - DeAnna C Bublitz
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Damon W Ellison
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Erika I Lutter
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
14
|
Sicard M, Dittmer J, Grève P, Bouchon D, Braquart-Varnier C. A host as an ecosystem:Wolbachiacoping with environmental constraints. Environ Microbiol 2014; 16:3583-607. [DOI: 10.1111/1462-2920.12573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mathieu Sicard
- Institut des Sciences de l'Évolution; UMR CNRS 5554; Équipe Génomique de l'adaptation; Université Montpellier 2; Place Eugène Bataillon Montpellier Cedex 05 F-34095 France
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Jessica Dittmer
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| |
Collapse
|
15
|
Nawrotek A, Guimarães BG, Velours C, Subtil A, Knossow M, Gigant B. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. J Biol Chem 2014; 289:25199-210. [PMID: 25056950 DOI: 10.1074/jbc.m114.568436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although the actin network is commonly hijacked by pathogens, there are few reports of parasites targeting microtubules. The proposed member of the LcrE protein family from some Chlamydia species (e.g. pCopN from C. pneumoniae) binds tubulin and inhibits microtubule assembly in vitro. From the pCopN structure and its similarity with that of MxiC from Shigella, we definitively confirm CopN as the Chlamydia homolog of the LcrE family of bacterial proteins involved in the regulation of type III secretion. We have also investigated the molecular basis for the pCopN effect on microtubules. We show that pCopN delays microtubule nucleation and acts as a pure tubulin-sequestering protein at steady state. It targets the β subunit interface involved in the tubulin longitudinal self-association in a way that inhibits nucleotide exchange. pCopN contains three repetitions of a helical motif flanked by disordered N- and C-terminal extensions. We have identified the pCopN minimal tubulin-binding region within the second and third repeats. Together with the intriguing observation that C. trachomatis CopN does not bind tubulin, our data support the notion that, in addition to the shared function of type III secretion regulation, these proteins have evolved different functions in the host cytosol. Our results provide a mechanistic framework for understanding the C. pneumoniae CopN-specific inhibition of microtubule assembly.
Collapse
Affiliation(s)
- Agata Nawrotek
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Beatriz G Guimarães
- the Synchrotron SOLEIL, L'Orme de Merisiers, St Aubin, 91192 Gif sur Yvette, France, and
| | - Christophe Velours
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Agathe Subtil
- the Institut Pasteur, Unité de Biologie des Interactions Cellulaires, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Marcel Knossow
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Benoît Gigant
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France,
| |
Collapse
|